scholarly journals Scanning confocal vibrometer microscope for vibration analysis of energy-harvesting MEMS in wearables

2017 ◽  
Vol 84 (s1) ◽  
Author(s):  
Robert Kowarsch ◽  
Jürgen Janzen ◽  
Christian Rembe ◽  
Hyunjun Cho ◽  
Hyuck Choo

AbstractWe present a scanning confocal laser-Doppler vibrometer microscope for sensitive, contactless measurement of microelectromechanical systems (MEMS). This systems enables the dynamic analysis up to 3.2 MHz with a lateral resolution of few micrometers. We show measurements on developed MEMS for vocal-energy harvesting in wearables and medical implants. For efficient harvesting a cantilever beam with a serpentine form was designed with a fundamental resonance at 200 Hz. We verified the simulated mode shapes with our vibration measurements. The observed deviations in resonance frequencies between simulation and measurement are due to modelling and manufacturing dissimilarities.

Author(s):  
W. C. Tai ◽  
I. Y. Shen

This paper is to present an experimental study that measures ground-based response of a spinning, cyclic, symmetric rotor-bearing-housing system. In particular, the study focuses on rotor-housing coupled modes that are significantly dominated by housing deformation. In the experiments, a ball-bearing spindle motor, carrying a disk with four evenly spaced slots (i.e., the rotor), is mounted onto a stationary housing. The housing is a square plate supported with steel spacers at four corners and fixed to the ground. Two different ways are used to excite the rotor-housing system to measure frequency response functions (FRFs). One is to use an automatic hammer tapping at the disk, and the other is to use a piezoelectric actuator attached to the housing. Vibration of the rotor and housing is measured via a laser Doppler vibrometer and a capacitance probe. The experiments consist of two parts. The first part is to obtain FRFs when the rotor is not spinning. The measured FRFs reveal two rotor-housing coupled modes dominated by the housing. Their mode shapes are characterized by one nodal line in housing and one nodal diameter in the rotor. The second part is to obtain waterfall plots when the rotor is spinning at various speeds. The waterfall plots show that the housing dominant modes split into primary branches and secondary branches as the spin speed varies. The primary branches almost do not change with respect to the spin speed. In contrast, the secondary branches evolve into forward and backward branches. Moreover, their resonance frequencies increase and decrease at four times of the spin speed. The measured results agree well with the predictions found in the authors’ previous theoretical study [1].


Author(s):  
Ryoji Tamai ◽  
Ryozo Tanaka ◽  
Yoshichika Sato ◽  
Karsten Kusterer ◽  
Gang Lin ◽  
...  

Turbine blades are subjected to high static and dynamic loads. In order to reduce the vibration amplitude means of friction damping devices have been developed, e.g. damping wires, interblade friction dampers and shrouds. This paper presents both numerical and experimental results for investigating the dynamical behavior of shrouded turbine blades. The studies are focused on the lowest family of the bladed disk. The aspect of experimental studies, the effect of the shroud contact force on the resonance frequency of the blade was examined by using the simplified blade test stand. Based on the result of the simplified blade studies, the shroud contact force of the real blade was determined in order to stabilize the resonance frequencies of the bladed disk system. The resonance frequencies and mode shapes of the real bladed disk assembly were measured in no rotation and room temperature condition. Finally, the dynamic strains were measured in the actual engine operations by using a telemetry system. The aspect of analytical studies, a non-linear vibration analysis code named DATES was applied to predict vibration behavior of a shrouded blade model which includes contact friction surfaces. The DATES code is a forced response analysis code that employs a 3-dimensional friction contact model. The Harmonic Balance Method (HBM) is applied to solve resulting nonlinear equations of motion in frequency domain. The simulated results show a good agreement with the experimental results.


2021 ◽  

In the frame of automotive Noise Vibration and Harshness (NVH) evaluation, inner cabin noise is among the most important indicators. The main noise contributors can be identified in engine, suspensions, tires, powertrain, brake system, etc. With the advent of E-vehicles and the consequent absence of the Internal Combustion Engine (ICE), tire/road noise has gained more importance, particularly at mid-speed driving and in the spectrum up to 300 Hz. At the state of the art, the identification and characterization of Noise and Vibration sources rely on pointwise sensors (microphones, accelerometers, strain gauges). Optical methods such as Digital Image Correlation (DIC) and Laser Doppler Vibrometer (LDV) have recently received special attention in the NVH field because they can be used to obtain full-field measurements. Moreover, these same techniques could also allow to characterize the tire behavior in operating conditions, which would be practically impossible to derive with standard techniques. In this paper we will demonstrate how non-contact full-field measurement techniques can be used to reliably and robustly characterize the tire behavior up to 300 Hz, focusing on static conditions. Experimental modal analysis will extract the modal characteristic of the tire in both free-free and statically preloaded boundary conditions, using both DIC and LDV. The extracted natural frequencies, damping ratios and full-field mode shapes will be used on one side to improve the accuracy of tire models (either by deriving FRF based models or updating FE ones) but also as a reference for future investigation on the tire behavior characterization in rotating conditions.


2020 ◽  
Vol 30 (3) ◽  
Author(s):  
Le Tri Dat ◽  
Nguyen Duy Vy ◽  
Vu Lan

Resonance frequencies and mode shapes of microcantilevers are of important interest in micro-mechanical systems for enhancing the functionality and applicable range of the cantilevers in vibration transducing, energy harvesting, and highly sensitive measurement. In this study, using the Euler-Bernoulli theory for beam, we figured out the exact mode shapes of cantilevers of varying widths such as the overhang- or T-shaped cantilevers. The obtained mode shapes have been shown to significantly deviate from the approximate forms of a rectangular cantilever that are commonly used in mechanics and physics. They were then used to figure out the resonance frequencies of the cantilever. The analytical solutions have been confirmed by using the finite element method simulations with very low deviation. This study suggested a method for correctly obtaining the resonance frequency of microcantilevers with complicated dimensions, such as the doubly clamped cantilever with the undercut, with the overhangs at the clamped positions, or with an attached mass in the middle.


2014 ◽  
Vol 5 (2) ◽  
pp. 145-150 ◽  
Author(s):  
S. Teidj ◽  
A. Khamlichi ◽  
A. Driouach ◽  
A. Limam

Detection of cracks in mechanical components as early as possible enables monitoring structural health and scheduling efficiently the maintenance tasks such as replacing the critical parts just in time. Vibration analysis based techniques for crack detection have been largely considered in the framework of beam-like structures. This methodology relies essentially on the observed changes of beam frequencies and mode shapes induced by the presence of damage. In the present work, using an explicit analytical model assessing the effect of a crack on beam strain energy, the beam first resonance frequencies as they depend on a single crack defect characteristics were evaluated. The crack equations were obtained by means of fracture mechanics approach. Variations of the first beam frequencies and modes shapes were then related explicitly to the location and depth of the crack. Measuring the beam frequency changes and monitoring their variations can be used to perform identification of the crack defect parameters by solution of an inverse problem.


2021 ◽  
pp. 107754632110276
Author(s):  
Jun-Jie Li ◽  
Shuo-Feng Chiu ◽  
Sheng D Chao

We have developed a general method, dubbed the split beam method, to solve Euler–Bernoulli equations for cantilever beams under multiple loading conditions. This kind of problem is, in general, a difficult inhomogeneous eigenvalue problem. The new idea is to split the original beam into two (or more) effective beams, each of which corresponds to one specific load and bears its own Young’s modulus. The mode shape of the original beam can be obtained by linearly superposing those of the effective beams. We apply the split beam method to simulating mechanical responses of an atomic force microscope probe in the “dynamical” operation mode, under which there are a stabilizing force at the positioner and a point-contact force at the tip. Compared with traditional analytical or numerical methods, the split beam method uses only a few number of basis functions from each effective beam, so a very fast convergence rate is observed in solving both the resonance frequencies and the mode shapes at the same time. Moreover, by examining the superposition coefficients, the split beam method provides a physical insight into the relative contribution of an individual load on the beam.


2013 ◽  
Vol 486 ◽  
pp. 36-41 ◽  
Author(s):  
Róbert Huňady ◽  
František Trebuňa ◽  
Martin Hagara ◽  
Martin Schrötter

Experimental modal analysis is a relatively young part of dynamics, which deals with the vibration modes identification of machines or their parts. Its development has started since the beginning of the eighties, when the computers hardware equipment has improved and the fast Fourier transform (FFT) could be used for the results determination. Nowadays it provides an uncountable set of vibration analysis possibilities starting with conventional contact transducers of acceleration and ending with modern noncontact optical methods. In this contribution we mention the use of high-speed digital image correlation by experimental determination of mode shapes and modal frequencies. The aim of our work is to create a program application called Modan 3D enabling the performing of experimental modal analysis and operational modal analysis. In this paper the experimental modal analysis of a thin steel sample performed with Q-450 Dantec Dynamics is described. In Modan 3D the experiment data were processed and the vibration modes were determined. The reached results were verified by PULSE modulus specialized for mechanical vibration analysis.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 353
Author(s):  
Bin Zhang ◽  
Hongsheng Liu ◽  
Dezhi Li ◽  
Jinhui Liang ◽  
Jun Gao

Energy harvesting using piezoceramic has drawn a lot of attention in recent years. Its potential usage in microelectromechanical systems is starting to become a reality thanks to the development of an integrated circuit. An accurate equivalent circuit of piezoceramic is important in energy harvesting and the sensing system. A piezoceramic is always considered to be a current source according to empirical testing, instead of the derivation from its piezoelectric characteristics, which lacks accuracy under complicated mechanical excitation situations. In this study, a new current output model is developed to accurately estimate its value under various kinds of stimulation. Considering the frequency, amplitude and preload variation imposed on a piezoceramic, the multivariate model parameters are obtained in relation to piezo coefficients. Using this model, the current output could be easily calculated without experimental testing in order to quickly estimate the output power in energy harvesting whatever its geometric shape and the various excitations.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


Author(s):  
Siu-Tong Choi ◽  
Sheng-Yang Mau

Abstract In this paper, an analytical study of the dynamic characteristics of geared rotor-bearing systems by the transfer matrix method is presented. Rotating shafts are modeled as Timoshenko beam with shear deformation and gyroscopic effects taken into account. The gear mesh is modeled as a pair of rigid disks connected by a spring-damper set and a transmission-error exciter. The transfer matrix of a gear mesh is developed. The coupling motions of the lateral and torsional vibration are studied. In free vibration analysis of geared rotor systems, natural frequencies and corresponding mode shapes, and the whirl frequencies under different spin speeds are determined. Effects of bearing stiffness, isotropic and orthotropic bearings, pressure angle of the gear mesh are studied. In steady-state vibration analysis, responses due to the excitation of mass unbalance and the transmission error are studied. Parametric characteristics of geared rotor systems are discussed.


Sign in / Sign up

Export Citation Format

Share Document