In vitro and in silico studies on AChE inhibitory effects of a series of donepezil-like arylidene indanones

2020 ◽  
Vol 45 (4) ◽  
pp. 359-363
Author(s):  
Belgin Sever ◽  
Mehlika Dilek Altıntop ◽  
Halide Edip Temel

AbstractObjectiveDonepezil is the most potent acetylcholinesterase (AChE) inhibitor currently available on the market for the management of Alzheimer’s disease. In this study, it was aimed to identify potent donepezil analogues.Materials and methodsThe effects of arylidene indanones (1–10) on AChE inhibition were examined using modified Ellman’s assay. Compound 4, the most potent arylidene indanone in this series, was subjected to molecular docking to anticipate its binding mode in the AChE site (PDB code: 4EY7). The pharmacokinetic profiles of all derivatives were also predicted.ResultsCompound 4 was found as the most potent AChE inhibitor with an IC50 value of 5.93 ± 0.29 μg/mL. According to molecular docking studies, compound 4 presented favorable interactions such as π–π interactions with Trp286 and Tyr337. In silico studies revealed that the compound did not violate Lipinski’s rule of five and Jorgensen’s rule of three, making it a potential orally bioavailable agent.ConclusionCompound 4 is a feasible candidate for further experiments related to AChE inhibition.

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1380
Author(s):  
Johanis Wairata ◽  
Edwin Risky Sukandar ◽  
Arif Fadlan ◽  
Adi Setyo Purnomo ◽  
Muhammad Taher ◽  
...  

This study aimed to isolate xanthones from Garcinia forbesii and evaluated their activity in vitro and in silico. The isolated compounds were evaluated for their antioxidant activity by DPPH, ABTS and FRAP methods. The antidiabetic activity was performed against α-glucosidase and α-amylase enzymes. The antiplasmodial activity was evaluated using Plasmodium falciparum strain 3D7 sensitive to chloroquine. Molecular docking analysis on the human lysosomal acid-alpha-glucosidase enzyme (5NN8) and P. falciparum lactate dehydrogenase enzyme (1CET) and prediction of ADMET for the active compound, were also studied. For the first time, lichexanthone (1), subelliptenone H (2), 12b-hydroxy-des-D-garcigerrin A (3), garciniaxanthone B (4) and garcigerin A (5) were isolated from the CH2Cl2 extract of the stem bark of G. forbesii. Four xanthones (Compounds 2–5) showed strong antioxidant activity. In vitro α-glucosidase test showed that Compounds 2 and 5 were more active than the others, while Compound 4 was the strongest against α-amylase enzymes. In vitro antiplasmodial evaluation revealed that Compounds 2 and 3 showed inhibitory activity on P. falciparum. Molecular docking studies confirmed in vitro activity. ADMET predictions suggested that Compounds 1–5 were potential candidates for oral drugs. The isolated 2–5 can be used as promising phytotherapy in antidiabetic and antiplasmodial treatment.


2021 ◽  
Vol 22 (17) ◽  
pp. 9130
Author(s):  
Krzysztof Peregrym ◽  
Łukasz Szczukowski ◽  
Benita Wiatrak ◽  
Katarzyna Potyrak ◽  
Żaneta Czyżnikowska ◽  
...  

Since long-term use of classic NSAIDs can cause severe side effects related mainly to the gastroduodenal tract, discovery of novel cyclooxygenase inhibitors with a safe gastric profile still remains a crucial challenge. Based on the most recent literature data and previous own studies, we decided to modify the structure of already reported 1,3,4-oxadiazole based derivatives of pyrrolo[3,4-d]pyridazinone in order to obtain effective COX inhibitors. Herein we present the synthesis, biological evaluation and molecular docking studies of 12 novel compounds with disubstituted arylpiperazine pharmacophore linked in a different way with 1,3,4-oxadiazole ring. None of the obtained molecules show cytotoxicity on NHDF and THP-1 cell lines and, therefore, all were qualified for further investigation. In vitro cyclooxygenase inhibition assay revealed almost equal activity of new derivatives towards both COX-1 and COX‑2 isoenzymes. Moreover, all compounds inhibit COX-2 isoform better than Meloxicam which was used as reference. Anti-inflammatory activity was confirmed in biological assays according to which title molecules are able to reduce induced inflammation within cells. Molecular docking studies were performed to describe the binding mode of new structures to cyclooxygenase. Investigated derivatives take place in the active site of COX, very similar to Meloxicam. For some compounds, promising druglikeness was calculated using in silico predictions.


2020 ◽  
Vol 16 ◽  
Author(s):  
Asma Mukhtar ◽  
Shazia Shah ◽  
Kanwal ◽  
Shehryar Hameed ◽  
Khalid Mohammed Khan ◽  
...  

Background: Diabetes mellitus is one the most chronic metabolic disorder. Since past few years our research group had synthesized and evaluated libraries of heterocyclic compounds against α and β-glucosidase enzymes and found encouraging results. The current study comprises of evaluation of indane-1,3-dione as antidiabetic agents based on our previously reported results obtained from closely related moiety isatin and its derivatives. Objective: A library of twenty three indane-1,3-dione derivatives (1-23) was synthesized and evaluated for α and βglucosidase inhibitions. Moreover, in silico docking studies were carried out to investigate the putative binding mode of selected compounds with the target enzyme. Method: The indane-1,3-dione derivatives (1-23) were synthesized by Knoevenagel condensation of different substituted benzaldehydes with indane-1,3-dione under basic condition. The structures of synthetic molecules were deduced by using different spectroscopic techniques including 1H-, 13C-NMR, EI-MS, and CHN analysis. Compounds (1-23) were evaluated for α and β-glucosidase inhibitions by adopting the literature protocols. Result: Off twenty three, eleven compounds displayed good to moderate activity against α-glucosidase enzyme, nonetheless, all compounds exhibited less than 50% inhibition against β-glucosidase enzyme. Compounds 1, 14, and 23 displayed good activity against α-glucosidase enzyme with IC50 values of 2.80 ± 0.11, 0.76 ± 0.01, and 2.17 ± 0.18 µM, respectively. The results have shown that these compounds have selectively inhibited the α-glucosidase enzyme. The in silico docking studies also supported the above results and showed different types of interactions of synthetic molecules with the active site of enzyme. Conclusion: The compounds 1, 14, and 23 have shown good inhibition against α-glucosidase and may potentially serve as lead for the development of new therapeutic representatives.


Author(s):  
Saranya Sivaraj ◽  
Gomathi Kannayiram ◽  
Gayathri Dasararaju

Objective: This study is aimed to evaluate the anti-diabetic effect of sequentially extracted (hexane, dichloromethane, ethyl acetate, and ethanol) Myristica fragrans houtt (mace) through in vitro and in silico studies. Methods: The in vitro anti-diabetic effect of the sequentially extracted plant were evaluated for its alpha-amylase inhibitory activity and the potential binding was studied by in silico studies using Schrödinger Maestro.Results: All extracts showed dose dependent alpha-amylase inhibitory effect. At concentration 500 µg/ml, all the extracts showed more than 60% inhibition of the alpha-amylase enzyme and the highest inhibition (81.30%) at 500 µg/ml was observed in DCM extract of mace. Potential compounds were identified by in silico molecular docking studies of alpha-amylase with phytocomponents from DCM extract. Among the top three compounds from virtual screening, induced fit docking studies revealed 2,5-bis(3,4-dimethoxyphenyl)-3,4-dimethyloxolane possessed better binding affinity when compared with the drug metformin. Conclusion: The obtained in vitro and in silico results suggest that all extracts of Myristica fragrans can be used successfully for the management of diabetes mellitus.Keywords: Myristica fragrans, Mace, Sequential extraction, Alpha-amylase, Molecular docking.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 13 (4) ◽  
pp. 268-276
Author(s):  
Sridevi Ayla ◽  
Monika Kallubai ◽  
Suvarnalatha Devi Pallipati ◽  
Golla Narasimha

Background:Laccase, a multicopper oxidoreductase (EC: 1.10.3.2), is a widely used enzyme in bioremediation of textile dye effluents. Fungal Laccase is preferably used as a remediating agent in the treatment and transformation of toxic organic pollutants. In this study, crude laccase from a basidiomycetes fungus, Phanerochaete sordida, was able to decolorize azo, antroquinone and indigoid dyes. In addition, interactions between dyes and enzyme were analysed using molecular docking studies.Methods:In this work, a white rot basidiomycete’s fungus, Phanerochaete sordida, was selected from forest soil isolates of Eastern Ghats, and Tirumala and lignolytic enzymes production was assayed after 7 days of incubation. The crude enzyme was checked for decolourisation of various synthetic textile dyes (Vat Brown, Acid Blue, Indigo, Reactive Blue and Reactive Black). Molecular docking studies were done using Autodock-4.2 to understand the interactions between dyes and enzymes.Results:Highest decolourisation efficiency was achieved with the crude enzyme in case of vat brown whereas the lowest decolourisation efficiency was achieved in Reactive blue decolourisation. Similar results were observed in their binding affinity with lignin peroxidase of Phanerochaete chrysosporium through molecular docking approach.Conclusion:Thus, experimental results and subsequent in silico validation involving an advanced remediation approach would be useful to reduce time and cost in other similar experiments.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Padikkamannil Abishad ◽  
Pollumahanti Niveditha ◽  
Varsha Unni ◽  
Jess Vergis ◽  
Nitin Vasantrao Kurkure ◽  
...  

Abstract Background In the wake of emergence of antimicrobial resistance, bioactive phytochemical compounds are proving to be important therapeutic agents. The present study envisaged in silico molecular docking as well as in vitro antimicrobial efficacy screening of identified phytochemical ligands to the dispersin (aap) and outer membrane osmoporin (OmpC) domains of enteroaggregative Escherichia coli (EAEC) and non-typhoidal Salmonella spp. (NTS), respectively. Materials and methods The evaluation of drug-likeness, molecular properties, and bioactivity of the identified phytocompounds (thymol, carvacrol, and cinnamaldehyde) was carried out using Swiss ADME, while Protox-II and StopTox servers were used to identify its toxicity. The in silico molecular docking of the phytochemical ligands with the protein motifs of dispersin (PDB ID: 2jvu) and outer membrane osmoporin (PDB ID: 3uu2) were carried out using AutoDock v.4.20. Further, the antimicrobial efficacy of these compounds against multi-drug resistant EAEC and NTS strains was determined by estimating the minimum inhibitory concentrations and minimum bactericidal concentrations. Subsequently, these phytochemicals were subjected to their safety (sheep and human erythrocytic haemolysis) as well as stability (cationic salts, and pH) assays. Results All the three identified phytochemicals ligands were found to be zero violators of Lipinski’s rule of five and exhibited drug-likeness. The compounds tested were categorized as toxicity class-4 by Protox-II and were found to be non- cardiotoxic by StopTox. The docking studies employing 3D model of dispersin and ompC motifs with the identified phytochemical ligands exhibited good binding affinity. The identified phytochemical compounds were observed to be comparatively stable at different conditions (cationic salts, and pH); however, a concentration-dependent increase in the haemolytic assay was observed against sheep as well as human erythrocytes. Conclusions In silico molecular docking studies provided useful insights to understand the interaction of phytochemical ligands with protein motifs of pathogen and should be used routinely before the wet screening of any phytochemicals for their antibacterial, stability, and safety aspects.


2021 ◽  
Vol 19 (1) ◽  
pp. 347-357
Author(s):  
Belgin Sever ◽  
Mehlika Dilek Altıntop ◽  
Yeliz Demir ◽  
Cüneyt Türkeş ◽  
Kaan Özbaş ◽  
...  

Abstract In an effort to identify potent aldose reductase (AR) inhibitors, 5-(arylidene)thiazolidine-2,4-diones (1–8), which were prepared by the solvent-free reaction of 2,4-thiazolidinedione with aromatic aldehydes in the presence of urea, were examined for their in vitro AR inhibitory activities and cytotoxicity. 5-(2-Hydroxy-3-methylbenzylidene)thiazolidine-2,4-dione (3) was the most potent AR inhibitor in this series, exerting uncompetitive inhibition with a K i value of 0.445 ± 0.013 µM. The IC50 value of compound 3 for L929 mouse fibroblast cells was determined as 8.9 ± 0.66 µM, pointing out its safety as an AR inhibitor. Molecular docking studies suggested that compound 3 exhibited good affinity to the binding site of AR (PDB ID: 4JIR). Based upon in silico absorption, distribution, metabolism, and excretion data, the compound is predicted to have favorable pharmacokinetic features. Taking into account the in silico and in vitro data, compound 3 stands out as a potential orally bioavailable AR inhibitor for the management of diabetic complications as well as nondiabetic diseases.


Author(s):  
Arifa Begum ◽  
Shaheen Begum ◽  
Prasad Kvsrg ◽  
Bharathi K.

Objective: The 2, 4-thiazolidinedione containing compounds could lead to most promising scaffolds with higher efficiency toward the targets recognized for its antidiabetic activity when combined with azaglycine moiety. The objective of the present work was to merge functionalized aza glycines with 2, 4-thiazolidinediones, perform in silico evaluation by molecular properties prediction and undertake the molecular docking studies with targets relevant to diabetes, bacterial and viral infections using Swiss Dock programme for unraveling the target identification which can be used for further designing.Methods: (i) In silico studies were performed using Molinspiration online tool, Swiss ADME website and Swiss Target Prediction websites to compute the physicochemical descriptors, oral bioavailability and brain penetration. (ii) Molecular docking studies were performed using Swiss Dock web service for enumeration of binding affinities and assess their biological potentiality.Results: The results predicted good drug likeness, solubility, permeability and oral bioavailability for the compounds. All the compounds showed good docking scores as compared to the reference drugs. The N-oleoyl functionalized aza glycine derivative demonstrated superior binding properties towards all the studied target reference proteins, suggesting its significance in pharmacological actions.Conclusion: The binding interactions observed in the molecular docking studies suggest good binding affinity of the oleoyl functionalized aza glycine derivative, indicating that this derivative would be a promising lead for further investigations of anti-viral, anti-inflammatory and anti-diabetic activities.


2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


Sign in / Sign up

Export Citation Format

Share Document