The formation of CdS quantum dots and Au nanoparticles

Author(s):  
Andreas Schiener ◽  
Ella Schmidt ◽  
Christoph Bergmann ◽  
Soenke Seifert ◽  
Dirk Zahn ◽  
...  

AbstractWe report on microsecond-resolved in-situ SAXS experiments of the early nucleation and growth behavior of both cadmium sulfide (CdS) quantum dots in aqueous solution including the temperature dependence and of gold (Au) nanoparticles. A novel free-jet setup was developped to access reaction times as early as 20 μs. As the signal in particular in the beginning of the reaction is weak the containment-free nature of this sample environment prooved crucial. The SAXS data reveal a two-step pathway with a surprising stability of a structurally relaxed cluster with a diameter of about 2 nm. While these develop rapidly by ionic assembly, a further slower growth is attributed to cluster attachment. WAXS diffraction confirms, that the particles at this early stage are not yet crystalline. This growth mode is confirmed for a temperature range from 25°C to 45°C. An energy barrier for the diffusion of primary clusters in water of 0.60 eV was experimentally observed in agreement with molecular simulations. To access reaction times beyond 100 ms, a stopped-drop setup -again contaiment- free is introduced. SAXS experiments on the growth of Au nanoparticles on an extended time scale provide a much slower growth with one population only. Further, the influence of ionizing X-ray radiation on the Au particle fromation and growth is discussed.

2014 ◽  
Vol 213 ◽  
pp. 216-221
Author(s):  
Anna N. Galkina ◽  
Alexander A. Sergeev

The strucrture of CdS quantum dots 0,3% (mass), stabilized by the solution of the mercaptosuccinic acid in the gel matrix 50% THEOS is investigated by small-angle X-ray scattering (SAXS). Application of modern methods of SAXS data interpretation, including procedure of ab initio modeling of particle structure, allowed us for the to reveal structural organization of both individual nanoparticles and of their clusters incorporated in the polymer matrix. As a result, the shape, size, and size distribution of the obtained nanoparticles and their clusters depended on the structure of the gel matrix used as a formation medium.


2013 ◽  
Vol 712-715 ◽  
pp. 293-297
Author(s):  
Li Li

Pt/Bi3.15Nd0.85Ti3O12(BNT)/Pt ferroelectric capacitors were monitored using in situ X-ray irradiation with 10 keV at BL14B1 beamline (Shanghai Synchrotron Radiation Facility). BL14B1 combined with a ferroelectric analyzer enabled measurements in situ of electrical performance. The hysteresis curve (PE) of distortion depended on the polarization during irradiation, but the diffracted intensities of the (117) peak did not change in the beginning. ThePEcurve had a negligible change from 2.09×109Gy to 4.45×109Gy. Finally, bothPrandPr+very rapidly increased, but the intensities of (117) decreased. The hysteresis loops were remarkably deformed at the maximum total dose of 4.87×109Gy.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Thérèse Gorisse ◽  
Ludovic Dupré ◽  
Marc Zelsmann ◽  
Alina Vlad ◽  
Alessandro Coati ◽  
...  

We report the successful use of in situ grazing incidence small-angle X-ray scattering to follow the anodization of aluminum. A dedicated electrochemical cell was designed and developed for this purpose with low X-ray absorption, with the possibility to access all azimuthal angles (360°) and to remotely control the temperature of the electrolyte. Three well-known fabrication techniques of nanoporous alumina, i.e., single, double, and pretextured, were investigated. The differences in the evolution of the scattering images are described and explained. From these measurements, we could determine at which moment the pores start growing even for very short anodization times. Furthermore, we could follow the thickness of the alumina layer as a function of the anodization time by monitoring the period of the Kiessig fringes. This work is aimed at helping to understand the different steps taking place during the anodization of aluminum at the very early stages of nanoporous alumina formation.


Author(s):  
N. B. Simonova ◽  
F. V. Tuzikov ◽  
R. N. Khramov ◽  
N. A. Tuzikova ◽  
M. F. Tuzikov ◽  
...  

1999 ◽  
Vol 06 (06) ◽  
pp. 1053-1060 ◽  
Author(s):  
N. TABET ◽  
J. AL-SADAH ◽  
M. SALIM

X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the oxidation of (011) Ge substrates. The sample surfaces were CP4-etched, then annealed in situ, at different temperatures, for various durations. Dry and wet atmospheres were used. The oxidation rate during the early stage was increased by the presence of moisture in the atmosphere. A simple model was used to define and determine an apparent thickness of the oxide film from XPS measurements. The time dependence of the apparent thickness is consistent with a partial coverage of the surface by oxide islands. The growth kinetics of the oxide islands obeys a nearly cubic law.


2014 ◽  
Vol 16 (48) ◽  
pp. 26624-26630 ◽  
Author(s):  
C. A. F. Vaz ◽  
A. Balan ◽  
F. Nolting ◽  
A. Kleibert

In situX-ray photoemission electron microscopy reveals the evolution of chemical composition and magnetism of individual iron nanoparticles during oxidation.


2021 ◽  
pp. 2101607
Author(s):  
Zhaohui Fang ◽  
Haitao Tang ◽  
Ze Yang ◽  
Hao Zhang ◽  
Qingpeng Peng ◽  
...  

MRS Advances ◽  
2018 ◽  
Vol 3 (14) ◽  
pp. 773-778 ◽  
Author(s):  
Lei Wang ◽  
Alison McCarthy ◽  
Kenneth J. Takeuchi ◽  
Esther S. Takeuchi ◽  
Amy C. Marschilok

ABSTRACTZnFe2O4 (ZFO) represents a promising anode material for lithium ion batteries, but there is still a lack of deep understanding of the fundamental reduction mechanism associated with this material. In this paper, the complete visualization of reduction/oxidation products irrespective of their crystallinity was achieved experimentally through a compilation of in situ X-ray diffraction, synchrotron based powder diffraction, and ex-situ X-ray absorption fine structure data. Complementary theoretical modelling study further shed light upon the fundamental understanding of the lithiation mechanism, especially at the early stage from ZnFe2O4 up to LixZnFe2O4 (x = 2).


2012 ◽  
Vol 51 (17) ◽  
pp. 5995-6000 ◽  
Author(s):  
Yan-mei Mo ◽  
Yu Tang ◽  
Fei Gao ◽  
Jun Yang ◽  
Yuan-ming Zhang*

Sign in / Sign up

Export Citation Format

Share Document