Anisotropic electrical, thermal and magnetic properties of Al13Ru4 decagonal quasicrystalline approximant

Author(s):  
Magdalena Wencka ◽  
Stanislav Vrtnik ◽  
Primož Koželj ◽  
Zvonko Jagličić ◽  
Peter Gille ◽  
...  

AbstractWe present measurements of the anisotropic electrical and thermal transport coefficients (the electrical resistivity, the thermoelectric power, the thermal conductivity), the magnetization and the specific heat of the Al

2010 ◽  
Vol 14 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Sunday Etuk ◽  
Louis Akpabio ◽  
Ita Akpan

Thermal conductivity values at the temperature of 301-303K have been measured for Zea mays straw board as well as Zea mays heartwood (cork) board. Comparative study of the thermal conductivity values of the boards reveal that Zea mays heartwood board has a lower thermal conductivity value to that of the straw board. The study also shows that the straw board is denser than the heartwood board. Specific heat capacity value is less in value for the heartwood board than the straw board. These parameters also affect the thermal diffusivity as well as thermal absorptivity values for the two types of boards. The result favours the two boards as thermal insulators for thermal envelop but with heartwood board as a preferred insulation material than the straw board.


2013 ◽  
Vol 1517 ◽  
Author(s):  
Petar Popčević ◽  
Ante Bilušić ◽  
Kristijan Velebit ◽  
Ana Smontara

ABSTRACTTransport properties (thermal conductivity, electrical resistivity and thermopower) of decagonal quasicrystal d-AlCoNi, and approximant phases Y-AlCoNi, o-Al13Co4, m-Al13Fe4, m-Al13(Fe,Ni)4 and T-AlMnFe have been reviewed. Among all presented alloys the stacking direction (periodic for decagonal quasicrystals) is the most conductive one for the charge and heat transport, and the in/out-of-plane anisotropy is much larger than the in-plane anisotropy. There is a strong relationship between periodicity length along stacking direction and anisotropy of transport properties in both quasicrystals and their approximants suggesting a decrease of the anisotropy with increasing number of stacking layers.


2005 ◽  
Author(s):  
Zhanrong Zhong ◽  
Xinwei Wang

In this work, thermal transport in nanocrystalline materials is studied using large-scale equilibrium molecular dynamics (MD) simulation. Nanocrystalline materials with different grain sizes are studied to explore how and to what extent the size of nanograins affects the thermal conductivity and specific heat. Substantial thermal conductivity reduction is observed and the reduction is stronger for nanocrystalline materials with smaller grains. On the other hand, the specific heat of nanocrystalline materials shows little change with the grain size. The simulation results are compared with the thermal transport in individual nanograins based on MD simulation. Further discussions are provided to explain the fundamental physics behind the observed thermal phenomena in this work.


2001 ◽  
Vol 691 ◽  
Author(s):  
Donny W. Winkler ◽  
Terry M. Tritt ◽  
Robert Gagnon ◽  
J. Strom-Olsen

ABSTRACTQuasicrystals have properties associated with both crystalline and amorphous materials. These properties appear to be sensitive to both composition and annealing conditions. Therefore, it is important to investigate the influence of the microstructure on the electrical and thermal transport properties of quasicrystals. AlPdMn quasicrystal samples were prepared with various levels of Re substituted for the Mn (Al70Pd20Mn10−XReX) and then subjected to different annealing conditions. Electrical resistivity, thermopower and thermal conductivity were measured on each as grown and annealed sample over a broad range of temperature, 10 K < T < 300 K. The relationship between the electrical and thermal transport properties and microstructure will be presented and discussed.


1989 ◽  
Vol 162-164 ◽  
pp. 512-513 ◽  
Author(s):  
Katsunori Mori ◽  
Masahiro Sasakawa ◽  
Takao Igarashi ◽  
Yosikazu Isikawa ◽  
Kiyoo Sato ◽  
...  

1975 ◽  
Vol 53 (5) ◽  
pp. 486-497 ◽  
Author(s):  
J. G. Cook ◽  
M. J. Laubitz ◽  
M. P. Van der Meer

Data are presented for the thermal and electrical resistivity and thermoelectric power of two samples of Ca (having residual resistance ratios of 10 and 70) between 30 and 300 K. Large deviations from both Matthiessen's rule and the Wiedemann–Franz relationship are observed. The former are tentatively attributed to the presence of two distinct groups of carriers in Ca, and analyzed using the two band model. The latter deviations are interpreted as the effects of band structure. The thermoelectric power of Ca is large. In many respects the transport properties of Ca appear to be similar to those of the transition metals.


1962 ◽  
Vol 17 (10) ◽  
pp. 886-889 ◽  
Author(s):  
Y. Baer ◽  
G. Busch ◽  
C. Fröhlich ◽  
E. Steigmeier

The thermal conductivity, electrical conductivity. Hall coefficient und thermoelectric power of Ag2Se have been measured between 80 and 600°K. In the low temperature semiconductor phase the thermal conductivity increases with increasing temperature due to the high amount of carrier contribution. The latter has been calculated using the Price formula. Agreement with experiment is satisfactory. The specific heat has been measured between 30 and 200°C. For the latent heat a value of (5.7 ± 0.5) cal/gr was determined in agreement with measurements of Bellati and Lussana 4. In addition to the transition at 133 °C an unknown new transition has been found at about 90 °C.


1987 ◽  
Vol 01 (03n04) ◽  
pp. 989-992 ◽  
Author(s):  
M.T. Causa ◽  
S.M. Dutrús ◽  
C. Fainstein ◽  
G. Nieva ◽  
H.R. Salva ◽  
...  

We report here normal and superconducting properties of ABa 2 Cu 3 O 7−δ (with A=Y, Gd, Dy, and Er) and of Fe doped YBa2Cu3O7−δ . Results from X-ray powder diffraction, electrical resistivity, magnetic susceptibility, ESR, and specific heat measurements are presented, leading to a characterization of the magnetic properties of these materials. The effect of structural modifications of the lattice on the superconducting properties and the relative insensitivity of Tc to the presence of magnetic moments is discussed.


1993 ◽  
Vol 8 (9) ◽  
pp. 2299-2304 ◽  
Author(s):  
B. Nysten ◽  
J-P. Issi ◽  
H. Shioyama ◽  
M. Crespin ◽  
R. Setton ◽  
...  

The temperature variation of the thermal conductivity, the electrical resistivity, and the thermoelectric power of a graphitized polyimide film have been measured in the temperature range 2 < T < 300 K. The effect of the electrochemical intercalation with FeCl4− ions has also been studied. The thermal conductivity measurements confirm the high degree of graphitization that may be obtained with polyimide films. They show how intercalation increases the structural disorder and how the intercalate substantially contributes to the thermal conductivity at low temperatures. The electrical-resistivity and thermoelectric-power measurements reveal that the density of free carriers is about three times lower in stage-2 FeCl4− solvated intercalation compounds obtained by an electrochemical way than in stage-2 FeCl3 compounds obtained by a classical synthesis method.


Sign in / Sign up

Export Citation Format

Share Document