Mn-bearing eleonorite from Hagendorf South pegmatite, Germany: crystal structure and crystal-chemical relationships with other beraunite-type phosphates

2018 ◽  
Vol 233 (7) ◽  
pp. 469-477
Author(s):  
Sergey M. Aksenov ◽  
Nikita V. Chukanov ◽  
Jörg Göttlicher ◽  
Rupert Hochleitner ◽  
Ekaterina S. Zarubina ◽  
...  

Abstract Mn2+-bearing eleonorite from the Hagendorf South pegmatite situated south of Waidhaus, Upper Palatinate, Bavaria, Germany was study based on single crystal X-ray analysis, Mn and Fe K-edge XANES spectroscopy, as well as IR spectroscopy. According to spectroscopic data, all Mn is bivalent, and all Fe is trivalent. The empirical formula of the mineral is (Mn2+0.58Zn0.13Mg0.04 Fe3+5.24)Σ5.98(PO4)4(H2O,OH,O)11. The monoclinic unit-cell parameters are: a=20.832(3) Å, b=5.1569(3) Å, c=19.200(2) Å, β=93.01(1)°; space group C2/c. The structure was refined to R1=5.20% in anisotropic approximation using 1994 reflections with I>3σ(I). Despite in most beraunite-group minerals M1-site demonstrates selective accumulation of bivalent cations, in Mn-bearing eleonorite Mn2+-cations are disordered between octahedral sites without statistical predominance anywhere; all octahedral M(1–4)-sites are predominantly occupied by Fe3+. M1-site is half-occupied by Fe3+ and contains subordinate Mn2+ and minor Zn2+ and Mg2+. Based on the new data we suppose that Mn-bearing eleonorite was formed as a secondary phase as a result of oxidation of a primary Mn-bearing beraunite-group mineral in with Mn2+ was initially distributed between different M sites.

2016 ◽  
Vol 80 (7) ◽  
pp. 1243-1254 ◽  
Author(s):  
I. E. Grey ◽  
E. Keck ◽  
W. G. Mumme ◽  
A. Pring ◽  
C. M. Macrae ◽  
...  

AbstractKummerite, ideally Mn2+Fe3+A1(PO4)2(OH)2.8H2O, is a new secondary phosphate mineral belonging to the laueite group, from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Kummerite occurs as sprays or rounded aggregates of very thin, typically deformed, amber yellow laths. Cleavage is good parallel to ﹛010﹜. The mineral is associated closely with green Zn- and Al-bearing beraunite needles. Other associated minerals are jahnsite-(CaMnMn) and Al-bearing frondelite. The calculated density of kummerite is 2.34 g cm 3. It is optically biaxial (-), α= 1.565(5), β = 1.600(5) and y = 1.630(5), with weak dispersion. Pleochroism is weak, with amber yellow tones. Electron microprobe analyses (average of 13 grains) with H2O and FeO/Fe2O3 calculated on structural grounds and normalized to 100%, gave Fe2O3 17.2, FeO 4.8, MnO 5.4, MgO 2.2, ZnO 0.5, Al2O3 9.8, P2O5 27.6, H2O 32.5, total 100 wt.%. The empirical formula, based on 3 metal apfu is (Mn2+0.37Mg0.27Zn0.03Fe2+0.33)Σ1.00(Fe3+1.06Al0. 94)Σ2.00PO4)1.91(OH)2.27(H2O)7.73. Kummerite is triclinic, P1̄, with the unit-cell parameters of a = 5.316(1) Å, b =10.620(3) Å , c = 7.118(1) Å, α = 107.33(3)°, β= 111.22(3)°, γ = 72.22(2)° and V= 348.4(2) Å3. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 9.885 (100) (010); 6.476 (20) (001); 4.942 (30) (020); 3.988 (9) (̄110); 3.116 (18) (1̄20); 2.873 (11) (1̄21). Kummerite is isostructural with laueite, but differs in having Al and Fe3+ ordered into alternate octahedral sites in the 7.1 Å trans-connected octahedral chains.


2018 ◽  
Vol 15 (29) ◽  
pp. 228-233
Author(s):  
J. A. FLORES-CRUZ ◽  
G. E. DELGADO ◽  
J. E. CONTRERAS ◽  
M. QUINTERO ◽  
L. NIEVES ◽  
...  

The chalcogenide compound CuNbGaSe3, belonging to the system I-II-III-VI3, has been investigated by means of X-ray powder diffraction and its crystal structure has been refined by the Rietveld method.This is a material of the semiconductor type, which improves the properties of a simple semiconductor like CuGaSe2 because it ads spintronic applications due to its magnetic behavior. The powder pattern was composed by 94.2% of the principal phase CuNbGaSe3 and 5.8% of the secondary phase Cu0.667NbSe2. This material crystallizes with a CuFeInSe3-type structure in the tetragonal space group P4 2c (Nº 112), unit cell parameters a = 5.6199(4) Å, c = 11.0275(2) Å, V = 348.28(4) Å3, with a normal adamantane-structure where occurs a degradation of symmetry from the chalcopyrite structure I4 2d to a related structure P4 2c.


2017 ◽  
Vol 81 (2) ◽  
pp. 339-354 ◽  
Author(s):  
E. Schingaro ◽  
E. Mesto ◽  
M. Lacalamita ◽  
F. Scordari ◽  
E. Kaneva ◽  
...  

AbstractA crystal chemical study of narsarsukite from the Murun alkaline massif, Russia has been carried out combining single-crystal X-ray diffraction, electron microprobe analyses, micro-Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The narsarsukite single crystals are tetragonal (space group I4/m) with unit-cell parameters: 10.7140(1) ≤ a ≤ 10.7183(2) Å and 7.9478(1) ≤ c ≤ 7.9511(1) Å. The XPS analysis showed that Fe occurs in the mineral as Fe3+, whereas the FTIR spectrum showed that the sample studied is anhydrous. The average crystal chemical formula of the Murun narsarsukite is: Na2.04K0.01(V0.015+Ti0.74Zr0.01Al0.01Fe0.223+Mg0.01)1.00Si4.00(O10.74F0.23OH0.03)11.00. Structural disorder at octahedral and interstitial sites was modelled and also discussed in consideration of the main substitutional mechanism Ti4+ + O2– ↔ Fe3+ + (F–, OH–) active in the structure of the mineral.


2017 ◽  
Vol 12 (7) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Saifullah Abubakar ◽  
Vikneswaran Murugaiyah ◽  
Chin-Hoe Teh ◽  
Kit-Lam Chan

The crystal structure and absolute configuration of koetjapic acid were unambiguously reassigned by X-ray crystallography with strong support from NMR spectroscopic data. The acid contained 9 quaternary carbon atoms existing as an orthorhombic crystal with a space group of P21 21 21 and unit cell parameters of a = 7.6641(2), b = 14.6844(4) and c = 23.9316(6). Ring A adopted a chair conformation, ring B has an envelope conformation, whilst ring C assumed a half-chair and D displayed a chair conformation. The absolute configurations at C1 ( R), C5 ( R), C7 ( S), C10 ( S), C13 ( R), C14 ( R), C17 ( S) and C18 ( S) were assigned for the first time. The X-ray crystal of koetjapic acid was therefore reassigned as 3,4-seco-olean-4(23),12-diene-3,30-dioic acid. A plausible biogenetic synthetic pathway for compound 1 is also proposed.


2021 ◽  
Vol 59 (6) ◽  
pp. 1865-1886
Author(s):  
Andrew M. McDonald ◽  
Doreen E. Ames ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
William Zhe ◽  
...  

ABSTRACT Marathonite, Pd25Ge9, and palladogermanide, Pd2Ge, are two new platinum-group minerals discovered in the Marathon deposit, Coldwell Complex, Ontario, Canada. Marathonite is trigonal, space group P3, with a 7.391(1), c 10.477(2) Å, V 495.6(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 2.436(10)(014,104,120,210), 2.374(29)(023,203,121,211), 2.148(100)(114,030), 1.759(10)(025,205,131,311), 1.3605(13)(233,323,036,306), and 1.2395(14)(144,414,330). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite-ferhodsite), kotulskite and mertieite-II, the base-metal sulfides, chalcopyrite, bornite, millerite and Rh-bearing pentlandite, oberthürite and torryweiserite, and silicates including a clinoamphibole and a Fe-rich chlorite-group mineral. Rounded, elongated grains of marathonite are up to 33 × 48 μm. Marathonite is white, but pinkish brown compared to palladogermanide and bornite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 40.8 (470 nm), 44.1 (546 nm), 45.3 (589 nm), and 47.4 (650 nm). The calculated density is 10.933 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 19) using energy-dispersive spectrometry is: Si 0.11, S 0.39, Cu 2.32, Ge 18.46, Pd 77.83, Pt 1.10, total 100.22 wt.%, corresponding to the empirical formula (based on 34 apfu): (Pd23.82Cu1.19Pt0.18)Σ25.19(Ge8.28S0.40Si0.13)∑8.81 and the simplified formula is Pd25Ge9. The name is for the town of Marathon, Ontario, Canada, after which the Marathon deposit (Coldwell complex) is named. Results from electron backscattered diffraction show that palladogermanide is isostructural with synthetic Pd2Ge. Based on this, palladogermanide is considered to be hexagonal, space group , with a 6.712(1), c 3.408(1) Å, V 133.0(1), Z = 3. The seven strongest lines of the X-ray powder-diffraction pattern calculated for the synthetic analogue [d in Å (I)(hkl)] are: 2.392(100)(111), 2.211(58)(201), 2.197(43)(210), 1.937(34)(300), 1.846(16)(211), 1.7037(16)(002), and 1.2418(18)(321). Associated minerals are the same as for marathonite. Palladogermanide occurs as an angular, anhedral grain measuring 29 × 35 μm. It is white, but grayish-white when compared to marathonite, bornite, and chalcopyrite. Compared to zvyagintsevite, palladogermanide is a dull gray. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths for Ro and Ro' are: 46.8, 53.4 (470 nm), 49.5, 55.4 (546 nm), 50.1, 55.7 (589 nm), and 51.2, 56.5 (650 nm). The calculated density is 10.74 g/cm3, determined using the empirical formula and the unit-cell parameters from synthetic Pd2Ge. The average result (n = 14) using wavelength-dispersive spectrometry is: Si 0.04, Fe 0.14, Cu 0.06, Ge 25.21, Te 0.30, Pd 73.10, Pt 0.95, Pb 0.08, total 99.88 wt.%, corresponding (based on 3 apfu) to: (Pd1.97Pt0.01Fe0.01)Σ1.99(Ge1.00Te0.01)∑1.01 or ideally, Pd2Ge. The name is for its chemistry and relationship to palladosilicide. The crystal structure of marathonite was solved by single-crystal X-ray diffraction methods (R = 7.55, wR2 = 19.96 %). It is based on two basic modules, one ordered and one disordered, that alternate along [001]. The ordered module, ∼7.6 Å in thickness, is based on a simple Pd4Ge3 unit cross-linked by Pd atoms to form a six-membered trigonal ring that in turn gives rise to a layered module containing fully occupied Pd and Ge sites. This alternates along [001] with a highly disordered module, ∼3 Å in thickness, composed of a number of partially occupied Pd and Ge sites. The combination of sites in the ordered and disordered modules give the stoichiometric formula Pd25Ge9. The observed paragenetic sequence is: bornite → marathonite → palladogermanide. Phase equilibria studies in the Pd-Ge system show Pd25Ge9 (marathonite) to be stable over the range of 550–970 °C and that Pd2Ge (palladogermanide) is stable down to 200 °C. Both minerals are observed in an assemblage of clinoamphibole, a Fe-rich, chlorite-group mineral, and fragmented chalcopyrite, suggesting physical or chemical alteration, possibly both. Palladogermanide is also found associated with a magnetite of near end-member composition, potentially indicating a relative increase in fO2. Both minerals are considered to have developed at temperatures of 500–600 °C, under conditions of low fS2 and fO2, given the requirements needed to fractionate, concentrate, and form minerals with Ge-dominant chemistries.


2010 ◽  
Vol 6 (1) ◽  
pp. 891-896
Author(s):  
Manel Halouani ◽  
M. Dammak ◽  
N. Audebrand ◽  
L. Ktari

One nickel 1,4-cyclohexanedicarboxylate coordination polymers, Ni2 [(O10C6H4)(COO)2].2H2O  (I), was hydrothermally synthesized from an aqueous solution of Ni (NO3)2.6H2O, (1,4-CDC) (1,4-CDC = 1,4-cyclohexanedicarboxylic acid) and tetramethylammonium nitrate. Compound (I) crystallizes in the monoclinic system with the C2/m space group. The unit cell parameters are a = 20.1160 (16) Å, b = 9.9387 (10) Å, c = 6.3672 (6) Å, β = 97.007 (3) (°), V= 1263.5 (2) (Å3) and Dx= 1.751g/cm3. The refinement converged into R= 0.036 and RW = 0.092. The structure, determined by single crystal X-ray diffraction, consists of two nickel atoms Ni (1) and Ni (2). Lots of ways of which is surrounded by six oxygen atoms, a carboxyl group and two water molecules.


Author(s):  
Natalia Pakharukova ◽  
Minna Tuittila ◽  
Sari Paavilainen ◽  
Anton Zavialov

The attachment of many Gram-negative pathogens to biotic and abiotic surfaces is mediated by fimbrial adhesins, which are assembledviathe classical, alternative and archaic chaperone–usher (CU) pathways. The archaic CU fimbrial adhesins have the widest phylogenetic distribution, yet very little is known about their structure and mechanism of assembly. To elucidate the biogenesis of archaic CU systems, structural analysis of the Csu fimbriae, which are used byAcinetobacter baumanniito form stable biofilms and cause nosocomial infection, was focused on. The major fimbriae subunit CsuA/B complexed with the CsuC chaperone was purified from the periplasm ofEscherichia colicells co-expressing CsuA/B and CsuC, and the complex was crystallized in PEG 3350 solution using the hanging-drop vapour-diffusion method. Selenomethionine-labelled CsuC–CsuA/B complex was purified and crystallized under the same conditions. The crystals diffracted to 2.40 Å resolution and belonged to the hexagonal space groupP6422, with unit-cell parametersa=b= 94.71,c = 187.05 Å, α = β = 90, γ = 120°. Initial phases were derived from a single anomalous diffraction (SAD) experiment using the selenomethionine derivative.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 167-172
Author(s):  
Anastasiia P. Topnikova ◽  
Elena L. Belokoneva ◽  
Olga V. Dimitrova ◽  
Anatoly S. Volkov ◽  
Leokadiya V. Zorina

AbstractA new silicate-germanate K2Y[(Si3Ge)O10(OH)] was synthesized hydrothermally in a system Y2O3:GeO2:SiO2 = 1:1:2 (T = 280 °C; P = 90–100 atm.); K2CO3 was added to the solution as a mineralizer. Single-crystal X-ray diffraction experiment was carried out at low temperature (150 K). The unit cell parameters are a = 10.4975(4), b = 6.9567(2), c = 15.4001(6) Å, β = 104.894(4)°; V = 1086.86(7) Å3; space group is P 21/c. A novel complex anion is presented by corrugated (Si,Ge) tetrahedral layers connected by couples of YO6 octahedra into the mixed microporous framework with the channels along b and a axes, the maximal size of cross-section is ~5.6 Å. This structure has similarity with the two minerals: ring silicate gerenite (Ca,Na)2(Y,REE)3Si6O18 · 2H2O and chain silicate chkalovite Na2BeSi2O6. Six-member rings with 1̅ symmetry as in gerenite are distinguished in the new layer. They are mutually perpendicular to each other and connected by additional tetrahedra. Straight crossing chains in chkalovite change to zigzag four-link chains in the new silicate-germanate layer.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


Sign in / Sign up

Export Citation Format

Share Document