Die Umwandlung des Cristobalits

1959 ◽  
Vol 14 (10) ◽  
pp. 912-919
Author(s):  
O. Krisement ◽  
G. Trömel

The α ⇋ β inversion of cristobalite has been investigated by observing optically the transformation of a sufficiently great number of single cristais of microscopic size. The derived transformationtemperature-function (Mengenkurve) is in good agreement with data from microcalorimetric measurements. Additional information is obtained from the distribution of the transformation temperatures of individual cristais. The behavior of the α ⇋ β inversion is determined by the superposition of two effects: the GAussian distribution of the temperatures, for which the free energies of a- and β-phases are equal, and the GAussian distribution of values for the hysteresis.

2018 ◽  
Author(s):  
Alejandro Lara ◽  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

<div> <div> <div> <p>Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have been also used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in vac- uum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account deriving the atomic charges of polar DNA bases and when the energy needed to polarize the electron den- sity of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogues. Comparison of the two partitioning methods Hirsheld-I and Minimal Basis Iterative Stockholder (MBIS) revealed some deficiencies in the Hirshfeld-I method related to nonexistent isolated anionic nitrogen pro-atoms used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. </p> </div> </div> </div>


2020 ◽  
Vol 499 (3) ◽  
pp. 4418-4431 ◽  
Author(s):  
Sujatha Ramakrishnan ◽  
Aseem Paranjape

ABSTRACT We use the Separate Universe technique to calibrate the dependence of linear and quadratic halo bias b1 and b2 on the local cosmic web environment of dark matter haloes. We do this by measuring the response of halo abundances at fixed mass and cosmic web tidal anisotropy α to an infinite wavelength initial perturbation. We augment our measurements with an analytical framework developed in earlier work that exploits the near-lognormal shape of the distribution of α and results in very high precision calibrations. We present convenient fitting functions for the dependence of b1 and b2 on α over a wide range of halo mass for redshifts 0 ≤ z ≤ 1. Our calibration of b2(α) is the first demonstration to date of the dependence of non-linear bias on the local web environment. Motivated by previous results that showed that α is the primary indicator of halo assembly bias for a number of halo properties beyond halo mass, we then extend our analytical framework to accommodate the dependence of b1 and b2 on any such secondary property that has, or can be monotonically transformed to have, a Gaussian distribution. We demonstrate this technique for the specific case of halo concentration, finding good agreement with previous results. Our calibrations will be useful for a variety of halo model analyses focusing on galaxy assembly bias, as well as analytical forecasts of the potential for using α as a segregating variable in multitracer analyses.


2012 ◽  
Vol 11 (02) ◽  
pp. 283-295 ◽  
Author(s):  
BAHRAM GHALAMI-CHOOBAR ◽  
ALI GHIAMI-SHOMAMI ◽  
PARIA NIKPARSA

In this work, calculations of p K b values have been performed for aniline and its substituted derivatives and sulfonamide drugs by using Gaussian 98 software package. Gas-phase energies were calculated with HF /6-31 G ** and B3LYP /6-31 G ** levels of theory. Free energies of solvation have been computed using the polarizable continuum model (PCM), conductor-like polarizable continuum model (CPCM) and the integral equation formalism-polarizable continuum model (IEFPCM) at the same levels which have been used for geometry determination in the gas-phase. The results show that the calculated p K b values using the B3LYP /6-31 G ** are better than those using the corresponding HF /6-31 G **. At first, the correlation equation was found to determine the p K b values of the investigated anilines. Then, this correlation equation was used to calculate the p K b values of the sulfonamide drugs. The results obtained indicate that the PCM model is a suitable solvation model for calculating p K b values in comparison to the other solvation models. For the investigated compounds a good agreement between the experimental and the calculated p K b values was also observed.


2021 ◽  
Author(s):  
V.E. Dmitriyev ◽  
D.V. Popov ◽  
V.A. Shakhnov

This article deals with the digital processing of a matrix radar image. The information received from the radar scanner needs to be transformed to enable visual perception. The article describes the main methods of digital processing of matrix data, presents the images transformed by them. The aim of the article was the development of a radar data processing algorithm that identifies the contours and edges of examined objects. The authors propose an algorithm for isolating the geometric structure of the scanned area. The difference between the processing method and the known analogues is based on the nature of the change in the values of the array being processed and consists in the double operation of extracting the gradient of the distribution of values. The software implementation of the algorithm is made in C++ using methods from an open library of computer vision. The efficiency of the algorithm was estimated based on comparison with the algorithms for determining edges based on linear filtering and neural networks. The results of the work can be used to create software for mobile short-range radar devices. Imaging from object boundaries and their edges provides spatial perception of the image by the operator, and free areas are available for rendering additional information. This solution allows you to combine scanning devices and thereby increase the information value of the result.


2021 ◽  
Author(s):  
Mohamed Azizi Ibrahim ◽  
◽  
Faisal Al-Enezi ◽  
Marie Van Steene ◽  
Alan Fernandes ◽  
...  

Spectral gamma-ray (SGR) data were acquired from a new slim logging-while-drilling (LWD) tool and from surface cuttings in a near vertical well and in a horizontal well across clastic deposits. Comparison of the data from both measurements indicates that there are advantages from both methods. X-ray diffraction (XRD) and X-ray fluorescence (XRF) data from cuttings also support the findings. The formation evaluation objective is to quantify the volumes of each mineral and fluid present in the formation. SGR data brings the required additional information to reduce the mineral volume uncertainty, especially for the clays in the formation with complex mineral assemblages. In the studied clastic deposits, several clay types are present (with the dominant contribution from illite and kaolinite) together with feldspars and trace elements like zircon and other heavy minerals. The presence of gas introduces another unknown, since it affects the porosity measurements and fluid volume calculation through bulk density and neutron porosity. The comparison of SGR data from LWD logs and from cuttings brings robustness to our conclusions. Comparison of the thorium, potassium, and uranium concentrations from LWD logs and from cuttings shows good agreement in the measurements for the low-angle well. The high-angle well data also shows good agreement between the two measurements except for the cleaner sand section. The results from the cuttings are affected by the accuracy of sample depth control due to the poor borehole conditions and inefficiency in evacuating cuttings in high-angle wells compared to low-angle wells. The trend of the SGR is maintained. The LWD SGR elemental concentrations are then used to solve the formation mineral fractions, which are compared with the same fractions from the XRD on cuttings. Similar conclusions are drawn for the elemental concentrations. The potassium concentration enables the quantification of illite and potassium feldspar. Uranium brings a significant contribution to the total GR measurement, which could lead to a clay volume overestimation if the uranium contributions weren’t excluded. In conclusion, LWD provides superior quality SGR data compared with SGR from cuttings because of the better depth control and vertical resolution. SGR on cuttings can be an alternative when combined with other LWD measurements and accepting a higher uncertainty, in case LWD SGR cannot be run due to certain borehole conditions. This paper compares the results of a slim tool LWD and cuttings SGR data for the first time and concludes on the applicability of each technique.


2017 ◽  
Vol 53 (2) ◽  
pp. 85-93 ◽  
Author(s):  
J. Zhou ◽  
L. Zhang ◽  
L. Chen ◽  
Y. Du ◽  
Z.K. Liu

A critical thermodynamic assessment of the metastable c-TiAlZrN coatings, which are reported to spinodally decompose into triple domains, i.e., c-TiN, c-AlN, and c-ZrN, was performed via the CALculation of PHAse Diagram (CALPHAD) technique based on the limited experimental data as well as the first-principles computed free energies. The metastable c-TiAlZrN coatings were modeled as a pseudo-ternary phase consisting of c-TiN, c-AlN and c-ZrN species, and described using the substitutional solution model. The thermodynamic descriptions for the three boundary binaries were directly taken from either the CALPHAD assessment or the first-principles results available in the literature except for a re-adjustment of the pseudo-binary c-AlN/c-ZrN system based on the experimental phase equilibria in the pseudo-ternary system. The good agreement between the calculated phase equilibria and the experimental data over the wide temperature range was obtained, validating the reliability of the presently obtained thermodynamic descriptions for the c-TiAlZrN system. Based on the present thermodynamic description, different phase diagrams and thermodynamic properties can be easily predicted. It is anticipated that the present thermodynamic description of the metastable c-TiAlZrN coatings can serve as the important input for the later quantitative description of the microstructure evolution during service life.


2021 ◽  
Author(s):  
Margarita Stampelou ◽  
Anna Suchankova ◽  
Eva Tzortzini ◽  
Lakshiv Dhingra ◽  
Kerry Barkan ◽  
...  

Drugs targeting the four adenosine receptor (AR) subtypes can provide “soft" treatment of various significant diseases. Even for the two experimentally resolved AR subtypes the description of the orthosteric binding area and structure-activity relationships of ligands remains a demanding task due to the high similar amino acids sequence but also the broadness and flexibility of the ARs binding area. The identification of new pharmacophoric moieties and nanomolar leads and the exploration of their binding area with mutagenesis and state-of-the-art computational methods useful also for drug design purposes remains a challenging aim for all ARs. Here, we identified several low nanomolar ligands and potent competitive antagonists against A1R / A3R, containing the novel pyrazolo[3,4-c]pyridine pharmacophore for ARs, from a screen of an in-house library of only 52 compounds, originally designed for anti-proliferative activity. We identified L2-L10, A15, A17 with 3-aryl, 7-anilino and a electronegative group at 5-position as low micromolar to low nanomolar A1R / A3R antagonists. A17 has for A1R Kd = 5.62 nM and a residence time (RT) 41.33 min and for A3R Kd = 13.5 nM, RT = 47.23 min. The kinetic data showed that compared to the not potent or mediocre congeners the active compounds have similar association, for example at A1R Kon = 13.97 x106 M-1 (A17) vs Kon = 3.36 x106 M-1 (A26) but much lower dissociation rate Koff = 0.024 min-1 (A17) vs 0.134 min-1 (A26). Using molecular dynamics (MD) simulations and mutagenesis experiments we investigated the binding site of A17 showing that it can interact with an array of residues in transmembrane helix 5 (TM5), TM6, TM7 of A1R or A3R including residues E5.30, E5.28, T7.35 in A1R instead of Q5.28, V5.30 , L7.35 in A3R. A striking observation for drug design purposes is that for L2506.51A the binding affinity of A17 significantly increased at A1R. A17 provides a lead representative of a promising series and by means of the Thermodynamics Integration coupled with MD simulations (TI/MD) method, first applied here on whole GPCR- membrane system and showing a very good agreement between calculated and experimental relative binding free energies for A1R and A3R (spearman rank correlation p = 0.82 and 0.84, respectively), and kinetic experiments can lead to ligands with improved profile against ARs.


2004 ◽  
Vol 70 (4) ◽  
pp. 463-479 ◽  
Author(s):  
C. ALTMAN ◽  
K. SUCHY

The fluid quintic dispersion equation and the full kinetic Boltzmann–Vlasov equation have been programmed for a one-species magnetoplasma in a form permitting direct comparison between them. The quintic equation yields five wave-modes, two electromagnetic, a Langmuir or Bernstein mode and two transversely polarized acoustic modes driven by the trace-free part of the anisotropic pressure tensor. The slower acoustic mode is found in the kinetic analysis to be evanescent, the other suffers appreciable Landau damping except in the first gyroharmonic band when its phase velocity approaches and even exceeds that of the Langmuir mode, with a resultant mixing of modal properties. The Langmuir or Bernstein mode refractive index surfaces found in the fluid and kinetic analyses are generally in good agreement, but gyroharmonic wave–particle interactions seen in the Bernstein modes are missed in the fluid analysis, such as resonant effects very close to the gyroharmonic frequencies and strong damping at all propagation angles when the wave frequency lies in a forbidden Bernstein region. In all cases the fluid analysis provides additional information on wave polarization and generalized energy fluxes–electromagnetic and acoustic–permitting easy identification of modes.


1965 ◽  
Vol 43 (7) ◽  
pp. 2059-2070 ◽  
Author(s):  
R. U. Lemieux ◽  
J. D. Stevens

The effects of long-range and virtual long-range coupling on the observed spectra of acetylated hexopyranoses and pentopyranoses are examined. Use is made of both spin decoupling and specific deuteration for the assignment of signals. It is seen that specific solvent effects on chemical shift can be superior to increasing the applied magnetic field for the resolution of the signals of closely related protons. The alteration of virtual long-range coupling effects in these ways can be useful in the diagnosis of spectra. Empirical rules are derived for estimating the long-range shielding effects which occur on changing configurations. It is seen that the inversion of a center can lead to deshielding of axial protons and to shielding of equatorial protons at other centers relative to the chemical shifts observed in reference compounds wherein all the acetoxy groups are in equatorial orientation. The effects in several cases result in equatorial protons giving their signal to higher field than chemically similar but axial protons. The conformational properties of pentopyranose tetraacetates as estimated from chemical shifts and coupling constants are seen to be in good agreement with expectations based on non-bonding interaction free energies. As expected, 2-deoxy-β-D-ribopyranose triacetate has the 1C-conformation when dissolved in chloroform.


2007 ◽  
Vol 130 ◽  
pp. 127-134
Author(s):  
Concepcio Seguí ◽  
Jaume Pons ◽  
Eduard Cesari

The present work analyses the influence of austenite ordering on a single crystal Ni-Mn- Ga alloy which displays, on cooling, a sequence of martensitic (MT) and intermartensitic (IMT) transformations. The MT and IMT show distinct behaviour after ageing in austenite: while the MT temperatures are not affected by the performed heat treatments, the IMT shifts toward lower temperatures after quenching from increasing temperatures, progressive recovery occurring upon ageing in parent phase. Such evolution can be related to changes in the L21 order degree, in the sense that ordering favours the occurrence of the intermartensitic transformation, while it does not affect noticeably the forward and reverse martensitic transformation temperatures. The closeness of the free energies of the different martensite structures allows to explain this behaviour.


Sign in / Sign up

Export Citation Format

Share Document