Einfluß der Strömungsform des Gases auf die chemischen Transportprozesse in Halogenglühlampen

1974 ◽  
Vol 29 (10) ◽  
pp. 1471-1477
Author(s):  
Gerhard M. Neumann

Abstract By raising the inert gas pressure and thus changing the type of gas flow chemical transport processes in tubular halogen incandescent lamps may be influenced. At medium pressures in the region of laminar flow separation of halogen and inert gas due to thermodiffusion occurs, the halogen cycle breaks down, and bulb blackening of the lamp is observed. At low and high pressure, where the streaming behaviour of the gas phase is dominated by diffusion or turbulence, separation of halogen and inert gas is overcome and the lamps stay clean. Observed pressures for changing from laminar to turbulent flow are 3.5 atm in xenon, 5.5 atm in krypton, and > 8 atm in argon in good accord with the well-known Reynolds' criterion.

2013 ◽  
Vol 10 (2) ◽  
Author(s):  
Jinliang Yuan ◽  
Guogang Yang ◽  
Bengt Sunden

There are various transport phenomena (gas-phase species, heat, and momentum) occurring at different length scales in anode-supported solid oxide fuel cells (SOFCs), which are strongly affected by catalytic surface reactions at active triple-phase boundaries (TPBs) between the void space (for gas), Ni (catalysts for electrons), and YSZ (an electrolyte material for ions). To understand the multiscale chemical-reacting transport processes in the cell, a three-dimensional numerical calculation approach (the computational fluid dynamics (CFD) method) is further developed and applied for a composite domain including a porous anode, fuel gas flow channel, and solid interconnect. By calculating the rate of microscopic surface-reactions involving the surface-phase species, the gas-phase species/heat generation and consumption related to the internal reforming reactions have been identified and implemented. The applied microscopic model for the internal reforming reactions describes the adsorption and desorption reactions of six gas-phase species and surface reactions of 12 surface-adsorbed species. The predicted results are presented and analyzed in terms of the gas-phase species and temperature distributions and compared with those predicted by employing the global reaction scheme for the internal reforming reactions.


2018 ◽  
Vol 55 (6) ◽  
pp. 839-851 ◽  
Author(s):  
L.J. Hosking ◽  
H.R. Thomas ◽  
M. Sedighi

This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.


1998 ◽  
Vol 13 (2) ◽  
pp. 494-503 ◽  
Author(s):  
S. Roy Choudhury ◽  
Y. Jaluria

The transport processes involved in the neck-down region for optical fiber drawing are numerically investigated. In this manufacturing process, a moving glass rod is heated in a furnace containing an inert gas environment and drawn into a thin optical fiber. The conjugate problem is solved considering both radiation and convection, with focus on the latter. Two different flow configurations, involving inert gas flow in the same as well as in the opposite direction as the moving preform/fiber, are considered in this study. A coordinate transformation is used to change the complicated computational domains in the gas and the fiber to cylindrical ones. The transport in the fiber is coupled with that in the gas through the boundary conditions. The radiative thermal transport is calculated using an enclosure model developed in an earlier study. The numerical results on convective flow and transport are validated by comparing with results available in the literaturefor simpler configurations. The effects of several important parameters such as fiber draw speed, inert gas velocity, furnace dimensions, and gas properties on the flow and temperature distributions are investigated. For the aiding flow case, in which the inert gases flow in the same direction as the fiber, heat transfer to the fiber increases as the gas velocity increases. For opposing flow, a recirculating region appears in the gas, close to the moving fiber surface, causing reduction in heat transfer as compared to the aiding case. The thickness of this recirculating zone decreases with increasing inert gas velocity. Radiation is found to be the dominant mode of heat transfer in the overall heating of the preform/fiber, with nitrogen as the inert gas. However, near the edges of the furnace, radiation heat transfer is relatively small and convection becomes very important. Also, the convective transfer rate is relatively large near the flow entrance because of the large temperature difference between the gas and the fiber. However, away from the entrance, the gas heats up and the temperature difference relative to the fiber decreases, resulting in a smaller convective heat transfer rate. The relevance of the results to various aspects of the fiber-drawing process is discussed.


2020 ◽  
Vol 58 (1) ◽  
pp. 30-43
Author(s):  
N.D. Yakimov ◽  
◽  
A.I. Khafizova ◽  
N.D. Chichirova ◽  
O.S. Dmitrieva ◽  
...  
Keyword(s):  
Gas Flow ◽  

1999 ◽  
Vol 572 ◽  
Author(s):  
Jingxi Sun ◽  
J. M. Redwing ◽  
T. F. Kuech

ABSTRACTA comparative study of two different MOVPE reactors used for GaN growth is presented. Computational fluid dynamics (CFD) was used to determine common gas phase and fluid flow behaviors within these reactors. This paper focuses on the common thermal fluid features of these two MOVPE reactors with different geometries and operating pressures that can grow device-quality GaN-based materials. Our study clearly shows that several growth conditions must be achieved in order to grow high quality GaN materials. The high-temperature gas flow zone must be limited to a very thin flow sheet above the susceptor, while the bulk gas phase temperature must be very low to prevent extensive pre-deposition reactions. These conditions lead to higher growth rates and improved material quality. A certain range of gas flow velocity inside the high-temperature gas flow zone is also required in order to minimize the residence time and improve the growth uniformity. These conditions can be achieved by the use of either a novel reactor structure such as a two-flow approach or by specific flow conditions. The quantitative ranges of flow velocities, gas phase temperature, and residence time required in these reactors to achieve high quality material and uniform growth are given.


1981 ◽  
Vol 59 (15) ◽  
pp. 2412-2416 ◽  
Author(s):  
John A. Stone ◽  
Margaret S. Lin ◽  
Jeffrey Varah

The reactivity of the dimethylchloronium ion with a series of aromatic hydrocarbons has been studied in a high pressure mass spectrometer ion source using the technique of reactant ion monitoring. Benzene is unreactive but all others, from toluene to mesitylene, react by CH3+ transfer to yield σ-bonded complexes. The relative rate of reaction increases with increasing exothermicity in line with current theories of nucleophilic displacement reactions.


Author(s):  
J. Stengele ◽  
H.-J. Bauer ◽  
S. Wittig

The understanding of multicomponent droplet evaporation in a high pressure and high temperature gas is of great importance for the design of modern gas turbine combustors, since the different volatilities of the droplet components affect strongly the vapor concentration and, therefore, the ignition and combustion process in the gas phase. Plenty of experimental and numerical research is already done to understand the droplet evaporation process. Until now, most numerical studies were carried out for single component droplets, but there is still lack of knowledge concerning evaporation of multicomponent droplets under supercritical pressures. In the study presented, the Diffusion Limit Model is applied to predict bicomponent droplet vaporization. The calculations are carried out for a stagnant droplet consisting of heptane and dodecane evaporating in a stagnant high pressure and high temperature nitrogen environment. Different temperature and pressure levels are analyzed in order to characterize their influence on the vaporization behavior. The model employed is fully transient in the liquid and the gas phase. It accounts for real gas effects, ambient gas solubility in the liquid phase, high pressure phase equilibrium and variable properties in the droplet and surrounding gas. It is found that for high gas temperatures (T = 2000 K) the evaporation time of the bicomponent droplet decreases with higher pressures, whereas for moderate gas temperatures (T = 800 K) the lifetime of the droplet first increases and then decreases when elevating the pressure. This is comparable to numerical results conducted with single component droplets. Generally, the droplet temperature increases with higher pressures reaching finally the critical mixture temperature of the fuel components. The numerical study shows also that the same tendencies of vapor concentration at the droplet surface and vapor mass flow are observed for different pressures. Additionally, there is almost no influence of the ambient pressure on fuel composition inside the droplet during the evaporation process.


Author(s):  
Georg F. Dietze ◽  
Reinhold Kneer

Due to the selective use of liquid films in specialized technical equipment (e.g. new generation nuclear reactors), a fundamental understanding of underlying momentum and heat transport processes inside these thin liquid layers (with a thickness of approximately 0.5 mm) is required. In particular, the influence of surface waves (which develop due to the film’s natural instability) on these transport processes is of interest. For a number of years, experimental and numerical observations in wavy falling liquid films have suggested that momentum and heat transfer in the capillary wave region, preceding large wave humps, undergo drastic modulations. Indeed, some results have indicated that upward flow, i.e. counter to the gravitational acceleration, takes place in this region. Further, evidence of a substantial increase in wall-side and interfacial transfer coefficients has also been noted. Recently, Dietze et al. [1,2] have established that flow separation takes place in the capillary wave region of 2-dimensional laminar falling liquid films, partially explaining the above mentioned observations. Thereby, it was shown that the strong third order deformation (i.e. change in curvature) of the liquid-gas interface in the capillary wave region causes an adverse pressure gradient sufficiently large to induce flow detachment from the wall. In the present paper, a detailed experimental and numerical account of the capillary flow separation’s kinematics and governing dynamics as well as its effect on heat transfer for two different 2-dimensional flow conditions is presented. Experimentally, velocity measurements (using Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV)) and film thickness measurements (using a Confocal Chromatic Imaging technique) were performed in a specifically designed optical test setup. On the numerical side, simulations of the full Navier-Stokes equations as well as the energy equation using the Volume of Fluid (VOF) method were performed. In addition to the 2-dimensional investigations, the characteristics of capillary flow separation under 3-dimensional wave dynamics were studied based on the 3-dimensional numerical simulation of a water film, which was previously investigated experimentally by Park and Nosoko [3]. Results show that flow separation persists over a wide area of the 3-dimensional capillary wave region, with multiple capillary separation eddies occurring in the shape of vortex tubes. In addition, strong spanwise flow induced by the same governing mechanism is shown to occur in this region, which could explain the drastic intensification of transfer to 3-dimensional liquid films.


Sign in / Sign up

Export Citation Format

Share Document