Measurement of a Weak Value

1997 ◽  
Vol 52 (1-2) ◽  
pp. 31-33
Author(s):  
R. G. Hulet ◽  
N. W. M. Ritchie ◽  
J. G. Story

Abstract "Weak measurements" are measurements in which the coupling between the measuring device and the observable to be measured is so weak that the eigenvalues of the observable are not resolved. Under certain circumstances the corresponding eigenfunctions can be made to interfere, producing a measurement result which is outside the allowed range of the observable's eigenvalues. We present the first measurement of this so-called "weak value" using an optical experiment. In our experiment, the small displacement between the two orthogonally polarized components of a laser beam passed through a birefringence crystal is measured. We use a numerical simulation to show that this phenomenon may be practical for detecting and amplifying small effects.

1991 ◽  
Vol 05 (26) ◽  
pp. 1713-1725 ◽  
Author(s):  
J.G. STORY ◽  
N.W.M. RITCHIE ◽  
R.G. HULET

A general description of weak measurements is presented. The “weak value” of an operator in pre- and post-selected systems is described both mathematically and using physical arguments. An optical experiment in which a measurement of a weak value has been realized is described. The possible use of pre- and post-selection as a means to amplify and detect weak effects is also discussed.


2020 ◽  
Vol 5 (3) ◽  
pp. 191-213
Author(s):  
Niladri Modak ◽  
Ankit K. Singh ◽  
Shyamal Guchhait ◽  
Athira BS ◽  
Mandira Pal ◽  
...  

Background: Weak measurement involves weak coupling between the system and the measuring device (pointer) enables large amplification and high precision measurement of small physical parameters. The outcome of this special measurement procedure involving nearly mutually orthogonal pre- and post-selection of states in such weakly interacting systems leads to weak value that can become exceedingly large and lie outside the eigenvalue spectrum of the measured observable. This unprecedented ability of weak value amplification of small physical parameters has been successfully exploited for various metrological applications in the optical domain and beyond. Even though it is a quantum mechanical concept, it can be understood using the classical electromagnetic theory of light and thus can be realized in classical optics. Objective: Here, we briefly review the basic concepts of weak measurement and weak value amplification, provide illustrative examples of its implementation in various optical domains. The applications involve measuring ultra-sensitive beam deflections, high precision measurements of angular rotation, phase shift, temporal shift, frequency shift and so forth, and expand this extraordinary concept in the domain of nano-optics and plasmonics. Methods: In order to perform weak value amplification, we have used Gaussian beam and spectral response as the pointer subsequently. The polarization state associated with the pointer is used as pre and post-selection device. Results: We reveal the weak value amplification of sub-wavelength optical effects namely the Goos-Hänchen shift and the spin hall shift. Further, we demonstrate weak measurements using spectral line shape of resonance as a natural pointer, enabling weak value amplification beyond the conventional limit, demonstrating natural weak value amplification in plasmonic Fano resonances and so forth. The discussed concepts could have useful implications in various nano-optical systems to amplify tiny signals or effects. Conclusion: The emerging prospects of weak value amplification towards the development of novel optical weak measurement devices for metrological applications are extensively discussed.


2012 ◽  
Vol 499 ◽  
pp. 114-119 ◽  
Author(s):  
Ming Di Wang ◽  
Shi Hong Shi ◽  
X.B. Liu ◽  
Cheng Fa Song ◽  
Li Ning Sun

Numerical simulation of laser cladding is the main research topics for many universities and academes, but all researchers used the Gaussian laser light source. Due to using inside-beam powder feeding for laser cladding, the laser is dispersed by the cone-shaped mirror, and then be focused by the annular mirror, the laser can be assumed as the light source of uniform intensity.In this paper,the temperature of powder during landing selected as the initial conditions, and adopting the life-and-death unit method, the moving point heat source and the uniform heat source are realized. In the thickness direction, using the small melt layer stacking method, a finite element model has been established, and layer unit is acted layer by layer, then a virtual reality laser cladding manu-facturing process is simulated. Calculated results show that the surface temperature of the cladding layer depends on the laser scanning speed, powder feed rate, defocus distance. As cladding layers increases, due to the heat conduction into the base too late, bath temperature will gradually increase. The highest temperature is not at the laser beam, but at the later point of the laser beam. In the clad-ding process, the temperature cooling rate of the cladding layer in high temperature section is great, and in the low-temperature, cooling rate is relatively small. These conclusions are also similar with the normal laser cladding. Finally, some experiments validate the simulation results. The trends of simulating temperature are fit to the actual temperature, and the temperature gradient can also ex-plain the actual shape of cross-section.


2016 ◽  
Vol 24 (4) ◽  
Author(s):  
P. Moszczyński ◽  
A. Walczak ◽  
P. Marciniak

AbstractIn cyclic articles previously published we described and analysed self-organized light fibres inside a liquid crystalline (LC) cell contained photosensitive polymer (PP) layer. Such asymmetric LC cell we call a hybrid LC cell. Light fibre arises along a laser beam path directed in plane of an LC cell. It means that a laser beam is parallel to photosensitive layer. We observed the asymmetric LC cell response on an external driving field polarization. Observation has been done for an AC field first. It is the reason we decided to carry out a detailed research for a DC driving field to obtain an LC cell response step by step. The properly prepared LC cell has been built with an isolating layer and garbage ions deletion. We proved by means of a physical model, as well as a numerical simulation that LC asymmetric response strongly depends on junction barriers between PP and LC layers. New parametric model for a junction barrier on PP/LC boundary has been proposed. Such model is very useful because of lack of proper conductivity and charge carriers of band structure data on LC material.


Author(s):  
Надежда Петровна Скибина

Проведено численное исследование нестационарного турбулентного сверхзвукового течения в камере сгорания прямоточного воздушно-реактивного двигателя. Описана методика экспериментального измерения температуры на стенке осесимметричного канала в камере сгорания двигателя. Математическое моделирование обтекания исследуемой модели двигателя проводилось для скоростей набегающего потока M = 5 ... 7. Начальные и граничные условия задачи соответствовали реальному аэродинамическому эксперименту. Проанализированы результаты численного расчета. Рассмотрено изменение распределения температуры вдоль стенки канала с течением времени. Проведена оценка согласованности полученных экспериментальных данных с результатами математического моделирования. Purpose. The aim of this study is a numerical simulation of unsteady supersonic gas flow in a working path of ramjet engine under conditions identical to aerodynamic tests. Free stream velocity corresponding to Mach numbers M=5 ... 7 are considered. Methodology. Presented study addresses the methods of physical and numerical simulation. The probing device for thermometric that allows to recording the temperature values along the wall of internal duct was proposed. To describe the motion of a viscous heat-conducting gas the unsteady Reynolds averaged Navier - Stokes equations are considered. The flow turbulence is accounted by the modified SST model. The problem was solved in ANSYS Fluent using finite-volume method. The initial and boundary conditions for unsteady calculation are set according to conditions of real aerodynamic tests. The coupled heat transfer for supersonic flow and elements of ramjet engine model are realized by setting of thermophysical properties of materials. The reliability testing of numerical simulation has been made to compare the results of calculations and the data of thermometric experimental tests. Findings. Numerical simulation of aerodynamic tests for ramjet engine was carried out. The agreement between the results of numerical calculations and experimental measurements for the velocity in the channel under consideration was obtained; the error was shown to be 2%. The temperature values were obtained in the area of contact of the supersonic flow with the surface of the measuring device for the external incident flow velocities for Mach numbers M = 5 ... 7. The process of heating the material in the channel that simulated the section of the engine combustion chamber was analyzed. The temperature distribution was studied depending on the position of the material layer under consideration relative to the contact zone with the flow. Value. In the course of the work, the fields of flow around the model of a ramjet engine were obtained, including the region of supersonic flow in the inner part of axisymmetric channel. The analysis of the temperature fields showed that to improve the quality of the results, it is necessary to take into account the depth of the calorimetric sensor. The obtained results will be used to estimate the time of interaction of the supersonic flow with the fuel surface required to reach the combustion temperature.


2016 ◽  
Vol 10 (2) ◽  
pp. 129-136 ◽  
Author(s):  
A. Belitzki ◽  
C. Marder ◽  
A. Huissel ◽  
M. F. Zaeh

2020 ◽  
Vol 10 (22) ◽  
pp. 8088
Author(s):  
Erkhembaatar Dashdavaa ◽  
Anar Khuderchuluun ◽  
Hui-Ying Wu ◽  
Young-Tae Lim ◽  
Chang-Won Shin ◽  
...  

With the development of the holographic printer, printing synthetic hologram requires smaller holographic element (hogel) size to improve spatial resolution of the reconstruction. On the contrary, a larger hogel size affords higher angular resolution, but it leads to a lower lateral resolution and there exists a trade-off problem. In this paper, a hologram synthesis method based on three-dimensional (3D) rendering of computer-generated holographic stereogram (HS) is proposed to limit the spatial-angular trade-off problem. The perspectives of the 3D scene are captured by re-centering the camera method and transformed into parallax-related images by a proposed pixel re-arrangement algorithm for holographic printing. Unlike the conventional approaches, the proposed algorithm not only improves the angular resolution of the reconstruction while maintaining the hogel size fixed, but also keeps the spatial resolution without degradation. The effectiveness of the proposed method is verified by numerical simulation and an optical experiment.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2258 ◽  
Author(s):  
Hubert Danielewski ◽  
Andrzej Skrzypczyk

This article presents the results of steel-sheet lap-joint-welding using laser beam radiation. The use of a laser beam and keyhole effect for deep material penetration in lap joint welding was presented. Thermodynamic mechanism of laser welding is related to material properties and process parameters. Estimation of welding parameters and joint properties’ analysis was performed through numerical simulation. The article presents a possibility of modeling laser lap-joint welding by using Simufact Welding software based on Marc solver and thermo-mechanical solution. Numerical calculation was performed for surface and conical volumetric heat sources simulating laser absorption and keyhole effect during steel sheet welding. Thermo-mechanical results of fusion zone (FZ), heat-affected zone (HAZ) and phase transformations calculated in numerical simulation were analyzed. The welding parameters for partial sealed joint penetration dedicated for gas piping installations were estimated from the numerical analysis. Low-carbon constructional steel was used for numerical and experimental analyses. A trial joint based on the estimated parameters was prepared by using a CO2 laser. Numerical and experimental results in the form of hardness distributions and weld geometry were compared. Metallographic analysis of the obtained weld was presented, including crystallographic structures and inclusions in the cross section of the joint.


Sign in / Sign up

Export Citation Format

Share Document