Three-Soliton Interaction and Soliton Turbulence in Superthermal Dusty Plasmas

2019 ◽  
Vol 74 (9) ◽  
pp. 757-766 ◽  
Author(s):  
Rustam Ali ◽  
Prasanta Chatterjee

AbstractPropagation and interaction of three solitons are studied within the framework of the Korteweg-de Vries (KdV) equation. The KdV equation is derived from an unmagnetised, collision-less dusty plasma containing cold inertial ions, stationary dusts with negative charge, and non-inertial kappa-distributed electrons, using the reductive perturbation technique (RPT). Adopting Hirota’s bilinear method, the three-soliton solution of the KdV equation is obtained and, as an elementary act of soliton turbulence, a study on the soliton interaction is presented. The concavity of the resulting pulse is studied at the strongest interaction point of three solitons. At the time of soliton interaction, the first- and second-order moments as well as the skewness and kurtosis of the wave field are calculated. The skewness and kurtosis decrease as a result of soliton interaction, whereas the first- and second-order moments remain invariant. Also, it is observed that the spectral index κ and the unperturbed dust-to-ion ratio μ have great influence on the skewness and kurtosis of the wave field.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Najah Kabalan ◽  
Mahmoud Ahmad ◽  
Ali Asad

The effect of the structure parameter on the compressibility of dust grains and soliton behavior in a dusty plasma system consisting of Maxwellian electrons, ions, and dust grains charged with a negative charge has been studied. In the theoretical study, a reductive perturbation technique was used to derive the Korteweg-de Vries (KdV) equation and employ the Hirota bilinear method to obtain multisoliton solution. It is found that coupling and structure parameters have a clear effect on the compressibility. These changes in the compressibility affected the amplitude and width of interactive solitons, in addition to the phase shifts resulting from the interaction. These results can be used to understand the behavior of solitary waves that occur in various natural and laboratory plasma environments with dust impurity situations.


2015 ◽  
Vol 70 (9) ◽  
pp. 703-711 ◽  
Author(s):  
Gurudas Mandal ◽  
Kaushik Roy ◽  
Anindita Paul ◽  
Asit Saha ◽  
Prasanta Chatterjee

AbstractThe nonlinear propagation and interaction of dust acoustic multi-solitons in a four component dusty plasma consisting of negatively and positively charged cold dust fluids, non-thermal electrons, and ions were investigated. By employing reductive perturbation technique (RPT), we obtained Korteweged–de Vries (KdV) equation for our system. With the help of Hirota’s bilinear method, we derived two-soliton and three-soliton solutions of the KdV equation. Phase shifts of two solitons and three solitons after collision are discussed. It was observed that the parameters α, β, β1, μe, μi, and σ play a significant role in the formation of two-soliton and three-soliton solutions. The effect of the parameter β1 on the profiles of two soliton and three soliton is shown in detail.


2019 ◽  
Vol 43 (1) ◽  
pp. 85-93
Author(s):  
Khandaker Md Eusha Bin Hafiz ◽  
Laek Sazzad Andallah

The kinematics of the solitary waves is formed by Korteweg-de Vries (KdV) equation. In this paper, a third order general form of the KdV equation with convection and dispersion terms is considered. Explicit finite difference schemes for the numerical solution of the KdV equation is investigated and stability condition for a first-order scheme using convex combination method is determined. Von Neumann stability analysis is performed to determine the stability condition for a second order scheme. The well-known qualitative behavior of the KdV equation is verified and error estimation for comparisons is performed. Journal of Bangladesh Academy of Sciences, Vol. 43, No. 1, 85-93, 2019


2021 ◽  
Author(s):  
Kevin Lamb

<p>Previous studies have suggested that fully nonlinear internal solitary waves (ISWs) are very soliton-like as the interaction of two ISWs results in only very small changes in amplitude of the interacting ISWs and in the production of a very small amplitude wave train. Previous studies have, however, considered ISWs with the polarity predicted by the sign of the quadratic nonlinear coefficient of the KdV equation. The Gardner equation, which is an extension of the KdV equation that includes a cubic nonlinear term, has ISWs of two polarities (i.e., waves of depression and elevation) when the cubic coefficient of the Gardner equation is positive. These waves are soliton solutions of the Gardner equations.  In this talk I will discuss the interaction of ISWs of opposite polarity in continuous asymmetric three layer stratifications. Regions in parameter space where ISWs of opposite polarity exist will be discussed and I will demonstrate via fully nonlinear numerical simulations that the interaction of ISWs of opposite polarity waves are far from soliton-like: their interaction can result in very large changes in wave amplitude and may produce a very complicated wave field with multiple large ISWs, a large linear wave field and breather-like waves.<span> </span></p>


Author(s):  
S. G. Rajeev

Some exceptional situations in fluid mechanics can be modeled by equations that are analytically solvable. The most famous example is the Korteweg–de Vries (KdV) equation for shallow water waves in a channel. The exact soliton solution of this equation is derived. The Lax pair formalism for solving the general initial value problem is outlined. Two hamiltonian formalisms for the KdV equation (Fadeev–Zakharov and Magri) are explained. Then a short review of the geometry of curves (Frenet–Serret equations) is given. They are used to derive a remarkably simple equation for the propagation of a kink along a vortex filament. This equation of Hasimoto has surprising connections to the nonlinear Schrödinger equation and to the Heisenberg model of ferromagnetism. An exact soliton solution is found.


2020 ◽  
Vol 75 (12) ◽  
pp. 999-1007
Author(s):  
Rustam Ali ◽  
Anjali Sharma ◽  
Prasanta Chatterjee

AbstractHead-on interaction of four dust ion acoustic (DIA) solitons and the statistical properties of the wave field due to head-on interaction of solitons moving in opposite direction is studied in the framework of two Korteweg de Vries (KdV) equations. The extended Poincaré–Lighthill–Kuo (PLK) method is applied to obtain two opposite moving KdV equations from an unmagnetized four component plasma model consisting of Maxwellian negative ions, cold mobile positive ions, κ-distributed electrons and positively charged dust grains. Hirota’s bilinear method is adopted to obtain two-soliton solutions of both the KdV equations and accordingly act of soliton turbulence is presented due to head-on collision of four solitons. The amplitude and shape of the resultant wave profile at the point of strongest interaction are obtained. To see the effect of head-on collision on the statistical properties of wave field the first four moments are computed. It is observed that the head-on collision has no effect on the first integral moment while the second, third and fourth moments increase in the dominant interaction region of four solitons, which is a clean indication of soliton turbulence.


Water Waves ◽  
2021 ◽  
Author(s):  
Maria Bjørnestad ◽  
Henrik Kalisch ◽  
Malek Abid ◽  
Christian Kharif ◽  
Mats Brun

AbstractIt is well known that weak hydraulic jumps and bores develop a growing number of surface oscillations behind the bore front. Defining the bore strength as the ratio of the head of the undular bore to the undisturbed depth, it was found in the classic work of Favre (Ondes de Translation. Dunod, Paris, 1935) that the regime of laminar flow is demarcated from the regime of partially turbulent flows by a sharply defined value 0.281. This critical bore strength is characterized by the eventual breaking of the leading wave of the bore front. Compared to the flow depth in the wave flume, the waves developing behind the bore front are long and of small amplitude, and it can be shown that the situation can be described approximately using the well known Kortweg–de Vries equation. In the present contribution, it is shown that if a shear flow is incorporated into the KdV equation, and a kinematic breaking criterion is used to test whether the waves are spilling, then the critical bore strength can be found theoretically within an error of less than ten percent.


2016 ◽  
Vol 71 (8) ◽  
pp. 735-740
Author(s):  
Zheng-Yi Ma ◽  
Jin-Xi Fei

AbstractFrom the known Lax pair of the Korteweg–de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.


1979 ◽  
Vol 24 (4) ◽  
pp. 97-100 ◽  
Author(s):  
F. Calogero ◽  
M. A. Olshanetsky ◽  
A. M. Perelomov

Sign in / Sign up

Export Citation Format

Share Document