Structure and Optical Properties of TiO2 Thin Films Prepared by a Sol-Gel Processing

2019 ◽  
Vol 74 (7) ◽  
pp. 635-642
Author(s):  
Zohra N. Kayani ◽  
Mehawish Saleem ◽  
Saira Riaz ◽  
Shahzad Naseem ◽  
Farhat Saleemi

AbstractTitanium dioxide (TiO2) thin films were deposited on CR-39 by a sol-gel dip coating route with different withdrawal speeds ranging from 250 to 350 mm/s. The TiO2 thin films were characterised by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, ellipsometry, and ultraviolet (UV)-visible (VIS)-near infrared (NIR) spectro-photometry. The role of withdrawal speed on the thickness of thin films to tailor properties of TiO2 thin films was studied. The XRD results revealed that all the films are amorphous in nature. TiO2 thin films deposited at different withdrawal speeds exhibit a decrease in transmission with an increase in speed. The direct optical band gap of the films has been estimated to be in the range 3.48–3.00 eV by UV-VIS-NIR spectro-photometry and 3.52–3.38 eV by ellipsometry. TiO2 is a potential prospect in microelectronic applications and can serve as an absorber layer for photovoltaic devices. Surface morphology is granular with an increase in grain size and an increase in withdrawal speed.

2020 ◽  
Vol 978 ◽  
pp. 384-389
Author(s):  
Sritama Roy ◽  
Saswati Soumya Dash ◽  
Prasanna Kumar Sahu ◽  
Smita Mishra ◽  
Jyoti Prakash Kar

Zinc Oxide (ZnO) thin films were produced by the sol gel dip coating process on the p-type silicon substrate with various withdrawal speeds changing from 1 to 4 cm/min, respectively. The films were annealed at a temperature of 500 °C for an hour in air ambient. The thin film thickness was found to be raised with the rise in withdrawal speed. The uniform distribution of the grains was appeared for all the films. The evolution of c-axis oriented (002) peak was revealed from X-ray diffraction (XRD) studies. The microstructural and optical properties of ZnO films were investigated by Raman, FTIR and photoluminescence spectroscopy (PL). The resistive switching properties of ZnO based memristors were studied by performing the current-voltage (I-V) measurements, where the thin films coated with lower withdrawal speed, have shown better switching property with rapid rise and fall of current during SET and RESET process, respectively.


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


Author(s):  
Abdelouahab Noua ◽  
Rebai Guemini ◽  
Hichem Farh ◽  
Mourad Zaabat

In this study, pure nickel oxide thin films were prepared by a sol-gel dip coating method with different withdrawal speeds, onto glass substrates and their structural, optical and morphological properties were investigated. The structural properties of NiO films were characterized by X-ray diffraction (XRD), Polycrystalline structures of the prepared films were detected. The optical properties of the films were studied by UV–visible spectrophotometer and the optical transmittance of the films within the visible and near infrared region was found to be more than 75% and decrease when the withdrawal speed increase. The surface morphology of the films was observed by atomic force microscopy and it was found that the root mean square (RMS) roughness increases from 3.78 to 15 nm when the withdrawal speed increased from 30 to70 mm/min. Thus, the withdrawal speed is a key factor to change the NiO thin films properties.


2013 ◽  
Vol 678 ◽  
pp. 108-112 ◽  
Author(s):  
Narayanaswamy Gokilamani ◽  
N. Muthukumarasamy ◽  
Mariyappan Thambidurai

Nanocrystalline titanium dioxide (TiO2) thin films have been prepared by dip coating method. The TiO2 thin films have been coated on glass substrate and annealed at 400, 450 and 500° C respectively. The X- ray diffraction pattern shows that TiO2 nanocrystalline thin films are of anatase structure and the grain size is found to be in the range of 20-35 nm. The annealed films have been observed to be nanocrystalline in nature and the crystallinity has been observed to improve on annealing. The surface topography of the films has been studied using atomic force microscope. The optical properties have been studied using transmittance spectra. The band gap has been found to lie in the range of 3.70 to 3.83 eV depending on the annealing temperature.


1994 ◽  
Vol 341 ◽  
Author(s):  
Nelcy Della ◽  
Santina Mohallem

AbstractThin films of pure barium titanate have been prepared by the sol-gel process from organomettalic sols containing titanium alkoxides and barium acetate (molar ratio [Ba]/[Ti]=l). It leads to transparent, homogeneous and adherent coatings. The influence of various parameters such as chemical concentration, viscosity, withdrawal speed and temperature of densification on film thickness is described. The films were characterized by X-ray diffraction during their heat treatment. Their crystallization temperature was observed to be around 450°C. No variations in the optical properties were observed during the crystallization, and it occurred without the appearance of cracks or pinholes. Tetragonal BaTiO3 structure was observed, and the ferroeletric properties were investigated as functions of thickness and grain size.


2019 ◽  
Vol 234 (10) ◽  
pp. 647-655
Author(s):  
Zohra Nazir Kayani ◽  
Atiqa Aslam ◽  
Rabia Ishaque ◽  
Syeda Nosheen Zahra ◽  
Hifza Hanif ◽  
...  

Abstract Nickel oxide thin films have been prepared by sol-gel dip-coating technique on glass substrate. It is shown that nickel oxide thin films have poly crystalline nature. Nickel oxide thin films exhibit high transmission (39–85%) in the wavelength range of 400–900 nm, strong absorption between 300 and 400 nm wavelengths and decrease of band gap values are in the range 3.69–3.27 eV with increase of withdrawal speed. High band gap at low withdrawal speed is because of the small average crystallite size, which decreases with increase in withdrawal speed. The SEM micrograph shows cubic crystallites and surface of thin films become dense, smooth and homogeneous with an increase in withdrawal speed. Assessment of nickel oxide deposition conditions provides gateway for effective and cheap solar cells.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Marek Nocuń ◽  
Sławomir Kwaśny

AbstractIn our investigation, V doped SiO2/TiO2 thin films were prepared on glass substrates by dip coating sol-gel technique. Chemical composition of the samples was studied by X-ray photoelectron spectroscopy (XPS). Transmittance of the samples was characterized using UV-VIS spectrophotometry. Subsequently band-gap energy (Eg) was estimated for these films. Powders obtained from sols were characterized by FTIR spectroscopy. It was found that vanadium decreases optical band gap of SSiO2/TiO2 films.


2009 ◽  
Vol 24 (8) ◽  
pp. 2541-2546 ◽  
Author(s):  
Eisuke Yokoyama ◽  
Hironobu Sakata ◽  
Moriaki Wakaki

ZrO2 thin films containing silver nanoparticles were prepared using the sol-gel method with Ag to Zr molar ratios [Ag]/[Zr] = 0.11, 0.25, 0.43, 0.67, 1.00, 1.50, and 2.33. After dip coating on glass substrate, coated films were annealed at 200 and 300 °C in air. X-ray diffraction peaks corresponding to crystalline Ag were observed, but a specific peak corresponding to ZrO2 was not observed. At the molar ratio [Ag]/[Zr] = 0.25, the particle size of Ag distributed broadly centered at 17 nm for an annealing temperature of 200 °C and at 25 nm for 300 °C. The films annealed in air at 200 °C showed an absorption band centered at 450 nm because of the silver surface plasmon resonance, whereas films heated at 300 °C in air caused a red shift of the absorption to 500 nm. The absorption peak was analyzed using the effective dielectric function of Ag-ZrO2 composite films modeled with the Maxwell-Garnett expression.


2004 ◽  
Vol 848 ◽  
Author(s):  
Andrew W. Jackson ◽  
Andrew L. Hector

ABSTRACTThere is an increasing interest in sol-gel synthesis of nitrides. The ability to deposit films of these materials by dip- or spin-coating will increase the range of applications in which they are viable and is an important step toward general sol-gel processing of nitride materials.With transition metals, the ammono based analogue of the well established alkoxy route to gels is inherently difficult to control. Due to the basicity of the system, the overwhelming tendency is of the starting materials to favour particle growth which results in a precipitate rather than a stable emulsion, unless both environment and synthetic pathway are carefully controlled. Hence reports to date of sol-gel routes to nitrides describe production of powders. We report work on a sol-gel route to titanium nitride with the ammonolysis of titanium amides controlled by temperature and chemical moderators, resulting in stable emulsions useful for dip-coating.


2006 ◽  
Vol 495 (1-2) ◽  
pp. 327-332 ◽  
Author(s):  
Urh Černigoj ◽  
Urška Lavrenčič Štangar ◽  
Polonca Trebše ◽  
Urša Opara Krašovec ◽  
Silvia Gross

Sign in / Sign up

Export Citation Format

Share Document