Green Zn3Al2Ge2O10: Mn2+ Phosphors: Solid-Phase Synthesis, Structure, and Luminescent Properties

2019 ◽  
Vol 74 (12) ◽  
pp. 1109-1113
Author(s):  
Wenlin Feng ◽  
Xiaozhan Yang ◽  
Jin Peng ◽  
Yike Zhang ◽  
Weiqiang Chen

AbstractNovel green phosphors Zn3Al2Ge2O10: Mn2+ were successfully synthesised at high temperature under weak reducing atmosphere. X-ray diffraction results indicate that the samples have like-spinel structure. The morphology, chemical states, and the composition of the dopants in the host were analysed with high-resolution transmission electron microscopy, energy dispersive spectrum, high-angle annular dark-field, and X-ray photoelectron spectroscopic techniques. The photoluminescence spectra show that the emission peak is at 537 nm (under excitation at λex = 334 nm), which is the strong green emission resulting from the 4T1 (4G)-6A1 (6S) transition of Mn2+ ion. The full width at half maximum broadband of the strongest broad emission is about 50 nm. The Zn3Al2Ge2O10 doped with 4 mol% Mn2+ appears to have the highest emission intensity after thermal treatment at 1250 °C for 5 h. The CIE coordinates are x = 0.279, y = 0.625, corresponding to green region, and the decay time is 4.88 μs. The results indicate that the phosphors may be used as a trichromatic fluorescent material.

2011 ◽  
Vol 17 (5) ◽  
pp. 759-765 ◽  
Author(s):  
Tanmay Das ◽  
Somnath Bhattacharyya

AbstractStructure and chemistry across the rare earth oxide-Ge interfaces of a Gd2O3-Ge-Gd2O3 heterostructure grown on p-Si (111) substrate using encapsulated solid phase epitaxy method have been studied at nanoscale using various transmission electron microscopy methods. The structure across both the interfaces was investigated using reconstructed phase and amplitude at exit plane. Chemistry across the interfaces was explored using elemental mapping, high-angle annular dark-field imaging, electron energy loss spectroscopy, and energy dispersive X-ray spectrometry. Results demonstrate the structural and chemical abruptness of both the interfaces, which is most essential to maintain the desired quantum barrier structure.


Author(s):  
Taylan Ors ◽  
Hiroyuki Takakura ◽  
Eiji Abe ◽  
Walter Steurer

A single-crystal X-ray diffraction structure analysis of decagonal Zn–Mg–Dy, a Frank–Kasper-type quasicrystal, was performed using the higher-dimensional approach. For this first Frank–Kasper (F–K) decagonal quasicrystal studied so far, significant differences to the decagonal Al–TM-based (TM: transition metal) phases were found. A new type of twofold occupation domain is located on certain edge centers of the five-dimensional unit cell. The structure can be described in terms of a two-cluster model based on a decagonal cluster (∼ 23 Å diameter) arranged on the vertices of a pentagon-Penrose tiling (PPT) and a star-like cluster covering the remaining space. This model is used for the five-dimensional refinements, which converged to anRvalue of 0.126. The arrangement of clusters is significantly disordered as indicated by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In order to check the structure and stability at higher temperatures,in-situhigh-temperature (HT) single-crystal X-ray diffraction experiments were conducted at 598 and 648 K (i.e.slightly below the decomposition temperature). The structure does not change significantly, however, the best quasiperiodic order is found at 598 K. The implication of these results on the stabilization mechanism of quasicrystals is discussed.


2013 ◽  
Vol 592-593 ◽  
pp. 483-488
Author(s):  
Jozef Janovec ◽  
Ivona Černičková ◽  
Pavol Priputen

The recent findings related to binary and ternary structurally complex phases in selected complex metallic alloys coming under Al-Pd-Co, Al-Cu-Co, and Al-Mn-Fe systems are presented. The phases were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, high-angle annular dark-field imaging, X-ray diffraction, and differential thermal analysis. There are highlighted some unusual features of phases D, U, T, and ε-family from both structural and compositional points of view.


2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


2019 ◽  
Vol 10 ◽  
pp. 1754-1767
Author(s):  
Ilka Simon ◽  
Julius Hornung ◽  
Juri Barthel ◽  
Jörg Thomas ◽  
Maik Finze ◽  
...  

NiGa is a catalyst for the semihydrogenation of alkynes. Here we show the influence of different dispersion times before microwave-induced decomposition of the precursors on the phase purity, as well as the influence of the time of microwave-induced decomposition on the crystallinity of the NiGa nanoparticles. Microwave-induced co-decomposition of all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in the ionic liquid [BMIm][NTf2] selectively yields small intermetallic Ni/Ga nanocrystals of 5 ± 1 nm as derived from transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and supported by energy-dispersive X-ray spectrometry (EDX), selected-area energy diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). NiGa@[BMIm][NTf2] catalyze the semihydrogenation of 4-octyne to 4-octene with 100% selectivity towards (E)-4-octene over five runs, but with poor conversion values. IL-free, precipitated NiGa nanoparticles achieve conversion values of over 90% and selectivity of 100% towards alkene over three runs.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Carmen Steluta Ciobanu ◽  
Simona Liliana Iconaru ◽  
Florian Massuyeau ◽  
Liliana Violeta Constantin ◽  
Adrian Costescu ◽  
...  

The luminescent europium-doped hydroxyapatite (Eu:HAp, Ca10−xEux(PO4)6(OH)2) with0≤x≤0.2nanocrystalline powders was synthesized by coprecipitation. The structural, morphological, and textural properties were well characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The vibrational studies were performed by Fourier transform infrared, Raman, and photoluminescence spectroscopies. The X-ray diffraction analysis revealed that hydroxyapatite is the unique crystalline constituent of all the samples, indicating that Eu has been successfully inserted into the HAp lattice. Eu doping inhibits HAp crystallization, leading to a decrease of the average crystallite size from around 20 nm in the undoped sample to around 7 nm in the sample with the highest Eu concentration. Furthermore, the samples show the characteristic5D0→7F0transition observed at 578 nm related to Eu3+ions distributed on Ca2+sites of the apatitic structure.


2020 ◽  
Vol 98 (12) ◽  
pp. 755-763
Author(s):  
Hamid Reza Ghayeni ◽  
Reza Razeghi ◽  
Abolfazl Olyaei

Cadmium sulfide nanorods with a length of 69 nm have been prepared by using Cd(OAc)2.2H2O and S8 at 125 °C in the presence of triethylenetetramine as the template agent and coordination agent and characterized by using X-ray diffraction, transmission electron microscopy, FTIR, photoluminescence, and UV–vis absorption spectroscopic techniques. Photocopolymerization of glycidyl methacrylate (GMA) and sodium acrylate (SA) was carried out using CdS nanorods as a photocatalyst under UV light exposure at 400 nm in the presence of β-cyclodextrin (β-CD). To optimization of the effective parameters on the synthesis of copolymer nanocomposite, the amounts of initiator, monomers, and β-CD, duration of pre-deoxygenation, and light wavelength were evaluated. Ring opening of poly(GMA-co-SA)/CdS nanocomposite with NaN3 afforded poly(HAzPMA-co-SA)/CdS nanocomposite and subsequent mixing with RDX in DMF led to the formation of poly(HAzPMA-co-SA)/RDX/CdS nanocomposite as a polymer bonded explosive. All of the copolymer nanocomposites were characterized using various tools of instrumental analysis.


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


MRS Advances ◽  
2017 ◽  
Vol 2 (50) ◽  
pp. 2857-2863 ◽  
Author(s):  
A. Santoveña ◽  
C. Rodriguez-Proenza ◽  
J.A. Maya-Cornejo ◽  
A. Ruiz-Baltazar ◽  
D. Bahena ◽  
...  

ABSTRACTBimetallic nanoparticles are of special interest for their potential applications to fuel cells, among the bimetallic systems, AuPd bimetallic nanoparticles have received great interest as they can be widely used as effective catalysts for various electrochemical reactions. Monodisperse AgPd alloy nanoparticles were synthesized by polyol method using silver nitrate and potassium tetrachloropalladate(II) in ethylene glycol as the reducing agent at 160 °C. Structural, compositional and electrochemical characterizations of synthesized bimetallic nanoparticles were investigated. High-angle annular dark field scanning/transmission electron microscopy (HAADF-STEM) images and parallel beam X-ray diffraction (XRD) of the bimetallic nanoparticles were obtained. XRD and the contrast of the HAADF-STEM images show that the bimetallic nanoparticles have an alloy structure. Cyclic voltammetry was carried out in order to confirm the electrochemical responses of the AgPd/C electrocatalysts for methanol oxidation. Thanks to the narrow size distribution of the AgPd alloy bimetallic nanoparticles (9.15 nm) the supported AgPd/C electrocatalysts have high catalytic activity toward methanol electro-oxidation.


Sign in / Sign up

Export Citation Format

Share Document