Kern- und Nucleolusausbildung in den Gametophytenzellen von Dryopteris filix-mas (L.) Schott bei Umsteuerung der Morphogenese

1967 ◽  
Vol 22 (9) ◽  
pp. 972-976 ◽  
Author(s):  
Rainer Bergfeld

The young gametophytes of the fern Dryopteris filix-mas (L.) SCHOTT have different metabolic patterns in red and blue light with blue favouring protein formation. In connection with this, the morphogenesis is also different. Two-dimensional prothallia are developed in blue light; in red light, however, the gametophytes grow as filaments. In the present paper the influence of red and blue radiation upon the size of the nuclei and nucleoli has been studied in fully differentiated stable basal cells and actively dividing apical cells. Time course studies revealed that the apical cell of the red form always contains extremly large nuclei and nucleoli. This is in agreement with high synthetic activity of this cell. In contrast, the apical cells with two cutting faces of the blue grown gametophytes have much smaller nuclei and nucleoli (this may be due to the comparativly high dividing activity of this cells). In already differentiated basal cells, these two organelles are even smaller and show only minor differences between red and blue ones. Within the gametophytes there is a gradient in the nucleus and nucleolus size from the apical to the basal cells.If blue grown gametophytes are brought into red light, or vice versa, typical changes in size of the nucleus and nucleolus in the direction of the respective forms are already visible after 3 hrs. under the new conditions. These changes in size and synthetic activity occur much earlier than any measurable morphological alteration. The data give good evidence for the fact that the striking change in the morphogenesis is preceded by a fundamental change in the synthetic activity of the nucleus and nucleolus.

1993 ◽  
Vol 48 (9-10) ◽  
pp. 788-794 ◽  
Author(s):  
F. L. Figueroa

Abstract Red and blue light pulses of 5 min applied together with 45 μM KNO3 stimulated the nitrate uptake and reduction and the assimilation of ammonium in darkness in the red alga Corallina elongata. Nitrate reductase and glutamine synthetase activities were increased in darkness after the application of both red and blue light pulses. Red light produced a dramatic increase in enzyme activities after the first hour in darkness but after 4 h the effect of blue light pulses was greater. The photostimulation of nitrogen metabolism was correlated with light-regulated accumulation of soluble proteins. Nitrogen incorporation, assimilation of ammonium, accu­mulation of total proteins and the increment in total intracellular nitrogen was greater in N-limited algae (C:N = 17.3) than in N-sufficient algae (C :N = 10.3) after the application of light pulses and nitrate. Because the stimulant effects of red and blue light on N-metabolism were partially reversed by far-red light, the possible involvement of the photoreversible red/ far-red photoreceptor, phytochrome, is proposed. In addition, the blue-light effect seems to be mediated by a specific B-light photoreceptor besides phytochrome due to the different time course of the response and the extent of the stimulation after blue compared to red light pulses.


2014 ◽  
Vol 66 (4) ◽  
pp. 25-34 ◽  
Author(s):  
Aneta Sulborska

Micromorphology and distribution of glandular and non-glandular trichomes on the above-ground organs of <em>Inula helenium </em>L. were investigated using light and scanning electron microscopy (SEM). Two types of biseriate glandular trichomes, i.e. sessile and stalk hairs, and non-glandular trichomes were recorded. Sessile glandular trichomes were found on all examined <em>I. helenium </em>organs (with their highest density on the abaxial surface of leaves and disk florets, and on stems), whereas stalk glandular trichomes were found on leaves and stems. Sessile trichomes were characterised by a slightly lower height (58–103 μm) and width (32–35 μm) than the stalk trichomes (62–111 μm x 31–36 μm). Glandular hairs were composed of 5–7 (sessile trichomes) or 6–9 (stalk trichomes) cell tiers. Apical trichome cell tiers exhibited features of secretory cells. Secretion was accumulated in subcuticular space, which expanded and ruptured at the top, and released its content. Histochemical assays showed the presence of lipids and polyphenols, whereas no starch was detected. Non-glandular trichomes were seen on involucral bracts, leaves and stems (more frequently on involucral bracts). Their structure comprised 2–9 cells; basal cells (1–6) were smaller and linearly arranged, while apical cells had a prozenchymatous shape. The apical cell was the longest and sharply pointed. Applied histochemical tests revealed orange-red (presence of lipids) and brow colour (presence of polyphenols) in the apical cells of the trichomes. This may suggest that beside their protective role, the trichomes may participate in secretion of secondary metabolites.


Reproduction ◽  
2000 ◽  
pp. 327-330 ◽  
Author(s):  
RJ Lucas ◽  
JA Stirland ◽  
YN Mohammad ◽  
AS Loudon

The role of the circadian clock in the reproductive development of Syrian hamsters (Mesocricetus auratus was examined in wild type and circadian tau mutant hamsters reared from birth to 26 weeks of age under constant dim red light. Testis diameter and body weights were determined at weekly intervals in male hamsters from 4 weeks of age. In both genotypes, testicular development, subsequent regression and recrudescence exhibited a similar time course. The age at which animals displayed reproductive photosensitivity, as exhibited by testicular regression, was unrelated to circadian genotype (mean +/- SEM: 54 +/- 3 days for wild type and 59 +/- 5 days for tau mutants). In contrast, our studies revealed a significant impact of the mutation on somatic growth, such that tau mutants weighed 18% less than wild types at the end of the experiment. Our study reveals that the juvenile onset of reproductive photoperiodism in Syrian hamsters is not timed by the circadian system.


2014 ◽  
Vol 9 (11) ◽  
pp. e976158
Author(s):  
Yihai Wang ◽  
Kevin M Folta
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1211
Author(s):  
Barbara Frąszczak ◽  
Monika Kula-Maximenko

The spectrum of light significantly influences the growth of plants cultivated in closed systems. Five lettuce cultivars with different leaf colours were grown under white light (W, 170 μmol m−2 s−1) and under white light with the addition of red (W + R) or blue light (W + B) (230 μmol m−2 s−1). The plants were grown until they reached the seedling phase (30 days). Each cultivar reacted differently to the light spectrum applied. The red-leaved cultivar exhibited the strongest plasticity in response to the spectrum. The blue light stimulated the growth of the leaf surface in all the plants. The red light negatively influenced the length of leaves in the cultivars, but it positively affected their number in red and dark-green lettuce. It also increased the relative chlorophyll content and fresh weight gain in the cultivars containing anthocyanins. When the cultivars were grown under white light, they had longer leaves and higher value of the leaf shape index. The light-green cultivars had a greater fresh weight. Both the addition of blue and red light significantly increased the relative chlorophyll content in the dark-green cultivar. The spectrum enhanced with blue light had positive influence on most of the parameters under analysis in butter lettuce cultivars. These cultivars were also characterised by the highest absorbance of blue light.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gilor Kelly ◽  
Danja Brandsma ◽  
Aiman Egbaria ◽  
Ofer Stein ◽  
Adi Doron-Faigenboim ◽  
...  

AbstractThe hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved. We found that overexpression of a sugar sensor, Arabidopsis hexokinase 1 (HXK1), in guard cells promotes hypocotyl elongation under white and blue light through PIF4. Furthermore, expression of PIF4 in guard cells is sufficient to promote hypocotyl elongation in the light, while expression of HY5 in guard cells is sufficient to inhibit the elongation of the hy5 mutant and the elongation stimulated by HXK1. HY5 exits the guard cells and inhibits hypocotyl elongation, but is degraded in the dark. We also show that the inhibition of hypocotyl elongation by guard cells’ HY5 involves auto-activation of HY5 expression in other tissues. It appears that guard cells are capable of coordinating hypocotyl elongation and that sugar and HXK1 have the opposite effect of light on hypocotyl elongation, converging at PIF4.


Author(s):  
Leila Kharazi ◽  
Sahar Dadkhahfar ◽  
Hoda Rahimi ◽  
Mehdi Gheisari ◽  
Nikoo Mozafari ◽  
...  

1970 ◽  
Vol 48 (6) ◽  
pp. 1251-1257 ◽  
Author(s):  
N. P. Voskresenskaya ◽  
G. S. Grishina ◽  
S. N. Chmora ◽  
N. M. Poyarkova

Apparent photosynthesis of attached leaves of Phaseolus vulgaris, Vicia faba, Pisum sativum, and Nicotiana tabacum at various intensities of blue and red light was measured by infrared CO2 gas analyzer in a closed system. Simultaneously the CO2 compensation point was measured.It was found that light-limited photosynthetic rate in blue light was equal to or more than that in red light. Inhibition of photosynthesis, which sometimes occurred at light-saturated intensities of blue light, could be avoided by addition of red light, prolonged exposure of the plants to blue light, or by lowering the O2 concentration. Accordingly, the increase of photosynthetic rate due to change of O2 concentration from 21 to 3% O2 is higher in blue light only when photosynthesis is inhibited by blue light at 21% O2. The data on the action of blue and red light on the CO2 compensation point seems to exclude the activation of photorespiration by blue light.The possible effects of blue light on apparent photosynthesis are discussed on the basis of the results presented.


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4707-4715 ◽  
Author(s):  
Qiwei Zhang ◽  
Haiqin Sun ◽  
Tao Kuang ◽  
Ruiguang Xing ◽  
Xihong Hao

Materials emitting red light (∼611 nm) under excitation with blue light (440–470 nm) are highly desired for fabricating high-performance white light-emitting diodes (LEDs).


Sign in / Sign up

Export Citation Format

Share Document