scholarly journals Metal Complexes of N-hydroxyethylnaphthalideneimine Schiff Base

1972 ◽  
Vol 27 (3) ◽  
pp. 304-307 ◽  
Author(s):  
R. K. Mehta ◽  
V. C. Singhi

The Schiff base, N-hydroxyethylnaphthalideneimine forms solid complexes with Mn (II) , Co (II), Ni (II), Cu (II), Zn (II), Cd (II), Pd (II) and UO2 (II). The structures of these compounds have been discussed on the basis of their elemental analysis, magnetic moment values and electronic spectral data. These studies have conclusively proved that UO2 (II) and Mn (II) complexes are octahedral in shape whereas the Cu (II) complex molecule displays a square planar or tetragonally distorted octahedral configuration. Co (II) , Ni (II) , Zn (II) and Cd (II) complexes are tetrahedral in structures while the Pd (II) compound is square planar.

1997 ◽  
Vol 4 (2) ◽  
pp. 65-68 ◽  
Author(s):  
Zahid H. Chohan ◽  
Syed K. A. Sherazi

Metal(II) complexes of hydrazine derived Schiff-base ligands of the type M(L)2Cl2 where M = Co, Cu, Ni and Zn and L = L1 and L2 have been prepared and characterised by molar conductance, magnetic moment, elemental analysis and electronic, IR, H-NMR and C13 spectral data.The different modes of chelation of the ligands and their comparative biological properties against different bacterial species are reported.


2020 ◽  
Vol 32 (12) ◽  
pp. 3157-3164
Author(s):  
Kiran Singh ◽  
Preeti Siwach ◽  
Amit Sharma

A series of metal-complexes of Co2+, Ni2+, Cu2+, Zn2+ and Pd2+ with new Schiff base named 5-methyl-4-((3-fluoro-4-methoxybenzylidiene)-amino)-3-thiol-s-triazole have been synthesized and characterized. Schiff base is formed by the condensation of 3-fluoro-4-methoxy-benzaldehyde and 4-amino-3-mercapto-5-methyl-1,2,4-triazoles (AMMT). After synthesis, Schiff base is characterized by IR and NMR techniques. Metal complexes are characterized by different techniques as IR, NMR, ESR, electronic and fluorescence. Elemental analysis and magnetic measurements of metal complexes have also been carried out. Using different techniques, tentative geometry for newly synthesized complexes have been proposed i.e. square planar for copper and palladium complexes and octahedral for rest of the metal complexes. The biological activities of all the metal complexes of this series are also examined.


2013 ◽  
Vol 78 (7) ◽  
pp. 947-957 ◽  
Author(s):  
Ionela Alan ◽  
Angela Kriza ◽  
Olguta Dracea ◽  
Nicolae Stanica

The new N,N?-bis-(3-methoxy-saliciliden)-3,3?-dimetilbenzidine (H2L) Schiff base and complexes with Co(II), Ni(II) and Cu(II) of type [M(HL)Cl(H2O)] (M=Co(II), Cu(II)) [M2L(H2O)4]X2 (M=Co(II), X=ClO4 and M=Cu(II), X=NO3) and [M2L(CH3COO)2] (M=Co(II), Ni(II), Cu(II)) were synthesised. The ligand and complexes were characterized by elemental analysis, conductibility measurements, magnetic moments at room temperature, IR, NMR, UV-VIS-NIR, EPR spectra and thermogravimetric analysis. A molar ratio of 1:1 or 1:2 between ligand and metal was determined from the elemental analysis. Except for perchlorate complex that behave as electrolyte, the rest of complexes are non-electrolytes. The spectral data suggest a tetrahedral, pseudo-tetrahedral or square-planar stereochemistry respectively, data confirmed by magnetic behaviour of complexes. The antimicrobial tests indicate a fungicide effect both for ligand and complexes.


Author(s):  
Cezar Spinu ◽  
Angela Kriza ◽  
Aurelia Meghea ◽  
Cristian Tigae

Metal complexes ML2Cl2, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) and L is Schiff base formed by condensation of 2-thiophenecarboxaldehyde and 2-aminopyridine, N-[2-thienylmethylidene]-2-arninopyridine (TNAPY), have been prepared and characterized by elemental analysis, magnetic and spectroscopic measurements. IR and NMR spectra show that the nitrogen of the azomethyne group and the sulphur of the thiophene ring take part in coordination. Magnetic, ESR and electronic spectral studies show a distorted octahedral structure for the Fe(II), Co(II), Ni(II) and Cu(II) complexes and a tetrahedral geometry for the Zn(II) and Cd(II) complexes. Conductance measurements suggest the non-electrolytic nature of the complexes, with the exception of the Zn(TNAPY)2Cl2 and Cd(TNAPY)2Cl2 compounds which are 1:2 electrolytes.


2021 ◽  
Vol 33 (6) ◽  
pp. 1222-1228
Author(s):  
R. Selvarani ◽  
S. Balasubramaniyan ◽  
K. Rajasekar ◽  
M. Thairiyaraja ◽  
R. Meenakshi

A new bidentate Schiff base (E)-N′[(E)-3-phenylallylidene]benzene-1,2-diamine derived from the condensation of o-phenylenediamine and cinnamaldehyde and its Mn(II) and Hg(II) complexes were synthesized and characterized by elemental analysis, molar conductance, magnetic moment, electronic spectra, IR, far-IR and NMR (1H & 13C) spectral studies. The elemental analysis and these metal proposed the metal:ligand stoichiometry and molecular formulae of the metal complexes. The molar conductance and electrochemical property indicates monomeric, neutral nature and redox properties of the metal complexes. The UV-visible spectral study supports the octahedral geometry for Mn(II) complex and square planar geometry for Hg(II) complex and further confirmed by magnetic moment. IR spectral data examined the coordination mode but far-IR is useful to identify the metal-ligand vibrations. The geometry, magnetic property and unsymmetrical nature of these metal complexes corroborated by NMR (1H & 13C) spectra. The DFT of Mn(II) complex studied and the structure optimized by B3LYP/Lan L2DZ using Gaussian 09W. Quantum chemical calculations were done by Mullikan population analysis, HOMO-LUMO and molecular electrostatic potential. The in vitro biological screening effects of the investigated complexes were tested against some bacteria and fungus by agar-well diffusion method. The results indicated that Mn(II) and Hg(II) complexes exhibit potentially active than the Schiff base which was further confirmed by pharmacokinetics study. The antioxidant activity of Schiff base and its Mn(II) complex was examined by radical scavenging DPPH method.


2021 ◽  
Vol 68 (4) ◽  
pp. 1008-1015
Author(s):  
Yong Yuan ◽  
Xi-Kun Lu ◽  
Gao-Qi Zhou ◽  
Xiao-Yang Qiu

Three new copper(II) complexes, [Cu(LH)2]Br2 (1), [Cu(LH)2]NCS2 (2), and [Cu(LH)2](NO3)2 (3), where LH is the zwitterionic form of 2-bromo-6-((2-(isopropylamino)ethylimino)methyl)phenol (HL), were synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy. The structures of the complexes were further confirmed by single crystal X-ray structure determination. All compounds are mononuclear copper(II) complexes. The Cu atoms in the complexes are coordinated by two imino N and two phenolate O atoms from two LH ligands, forming square planar coordination. The compounds were assayed for their antimicrobial activities.


Author(s):  
B. Akila ◽  
A. Xavier

Schiff base synthesized from 2-hydroxy-1-naphthaldehyde and 2-2’ (ethylene dioxy) bis ethylenediamine (L1) and its Metal complexes, [M (II) (L)6](where M= Mn(II), Ru(III), Cu(II)and V(V) L= Schiff base moiety), have been prepared and characterized by elemental analysis, spectroscopic measurements (infrared, electronic spectroscopy, 1H-NMR, EPR and Mass spectroscopy ). Elemental analysis of the metal complexes was suggested that the stoichiometry ratio is 1:1 (metal-ligand). The electronic spectra suggest an octahedral geometry for MC1and MC2 Schiff base complexes and distorted octahedral for MC3 and MC4 complexes. The Schiff base and its metal chelates have been screened for their invitro test antibacterial activity against three bacteria, gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pheneuammonia and Salmonella typhi). Two strains of fungus (Aspergillus niger and Candida albicans). The metal chelates were shown to possess more anti fungal activity compare then antibacterial activity and antioxidant properties. The complexes are highly active than the free Schiff-base ligand.    


2014 ◽  
Vol 79 (3) ◽  
pp. 291-302 ◽  
Author(s):  
Vukadin Leovac ◽  
Ljiljana Vojinovic-Jesic ◽  
Sonja Ivkovic ◽  
Marko Rodic ◽  
Ljiljana Jovanovic ◽  
...  

The synthesis and structural characterization of a square-planar copper(II) complex with pyridoxal S-methylisothiosemicarbazone (PLITSC) of the formula [Cu(PLITSC?H)H2O]Br?H2O (1) as the first Cu(II) complex with monoanionic form of this ligand were described. Complex 1 together with two previously synthesized complexes [Cu(PLITSC)Br2] (2) and [Cu(PLITSC)Br(MeOH)]Br (3) were characterized by elemental analysis, IR and electronic spectra and also by the methods of thermal analysis, conductometry and magnetochemistry.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Ashraf Malik ◽  
Shadma Parveen ◽  
Tansir Ahamad ◽  
Saad M. Alshehri ◽  
Prabal Kumar Singh ◽  
...  

A starch-urea-based biodegradable coordination polymer modified by transition metal Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) was prepared by polycondensation of starch and urea. All the synthesized polymeric compounds were characterized by Fourier transform-infrared spectroscopy (FT-IR),H-NMRspectroscopy,C-NMRspectroscopy, UV-visible spectra, magnetic moment measurements, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The results of electronic spectra and magnetic moment measurements indicate that Mn(II), Co(II), and Ni(II) complexes show octahedral geometry, while Cu(II) and Zn(II) complexes show square planar and tetrahedral geometry, respectively. The thermogravimetric analysis revealed that all the polymeric metal complexes are more thermally stable than the parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM standards of biodegradable polymers byCO2evolution method.


2021 ◽  
Vol 33 (9) ◽  
pp. 2207-2211
Author(s):  
Usha Bansal ◽  
Samta Goyal ◽  
Swati Agrawal

Manganese(II) and cobalt(II) complexes were synthesized with [N4] tetradentate macrocyclic ligand using different metal salts i.e. MnCl2, Mn(NO3)2, CoCl2 and Co(NCS)2. The ligand was prepared by condensation of glyoxal and carbahydrazide. All these were characterized by elemental analysis, molar conductance measurements, magnetic moment, IR, mass, electronic and EPR spectral studies. Elemental analysis indicates that the complexes have composition MLX2 where (X = Cl–, NO3 –,NCS–). All the complexes were found to be non-electrolytic in nature so can be formulated as [MLX2]. Infrared spectra of metal complexes suggest that the ligand behaves as tetradentate. On the basis of magnetic moment, electronic and EPR spectral data, all the metal complexes were found to be high spin with octahedral geometry.


Sign in / Sign up

Export Citation Format

Share Document