A Simple High-Yield Synthesis of Gallium(I) Tetrachlorogallate(III) and the Reaction of Digallium Tetrachloride Tetrahydrofuran Solvate with 1,2-Diols

2001 ◽  
Vol 56 (4-5) ◽  
pp. 337-341 ◽  
Author(s):  
Eva S. Schmidt ◽  
Annette Schier ◽  
Norbert W. Mitzel ◽  
Hubert Schmidbaur

Abstract Gallium(I) tetrachlorogallate(III) Ga[GaCU] was prepared in quantitative yield by thermal de­composition of dichlorogallane [HGaCl2]2, which is readily available from Et3SiH and [GaCl3]2. The reaction of catechol with solutions of this gallium(I) tetrachlorogallate(III) in tetrahydrofuran leads to the evolution of hydrogen gas and affords a dinuclear gallium(III) complex with penta-coordinate metal atoms chelated and bridged by mono-deprotonated catechol ligands. In the crystalline phase tetrahydrofuran molecules are hydrogen-bonded to the hydroxy groups: [Ga(1,2 -OC6H4OH)Cl2(C4H8O)]2. The reaction with pinacol also gives hydrogen and the analogous product [Ga(OCMe2CMe2OH)Cl2(C4H8O)]2. The structures of the two compounds have been determined by X-ray diffraction. A mechanism of the new reaction has been proposed which involves oxidative addition of the diol to the solvate (THF)Cl2Ga-GaCl2(THF) present in the tetrahydrofuran solution to give a gallium hydride intermediate.

1993 ◽  
Vol 58 (12) ◽  
pp. 2924-2935 ◽  
Author(s):  
Jane H. Jones ◽  
Bohumil Štíbr ◽  
John D. Kennedy ◽  
Mark Thornton-Pett

Thermolysis of [8,8-(PMe2Ph)2-nido-8,7-PtCB9H11] in boiling toluene solution results in an elimination of the platinum centre and cluster closure to give the ten-vertex closo species [6-(PMe2Ph)-closo-1-CB9H9] in 85% yield as a colourles air stable solid. The product is characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Crystals (from hexane-dichloromethane) are monoclinic, space group P21/c, with a = 903.20(9), b = 1 481.86(11), c = 2 320.0(2) pm, β = 97.860(7)° and Z = 8, and the structure has been refined to R(Rw) = 0.045(0.051) for 3 281 observed reflections with Fo > 2.0σ(Fo). The clean high-yield elimination of a metal centre from a polyhedral metallaborane or metallaheteroborane species is very rare.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nur Aimi Jani ◽  
Choonyian Haw ◽  
Weesiong Chiu ◽  
Saadah Abdul Rahman ◽  
Poisim Khiew ◽  
...  

Current work reports the study of Ag nanocrystals (NCs) decorated doubly anodized (DA) TiO2 nanotubes (NTs) thin film as an efficient photoelectrode material for water splitting and photocatalytic hydrogen gas production. DA process has been shown to be capable of producing less defective NTs and creating additional spacious gaps in between NT bundles to allow efficient and uniform integration of Ag NCs. By employing photoreduction method, Ag NCs can be deposited directly onto NTs, where the size and density of coverage can be maneuvered by merely varying the concentration of Ag precursors. Field emission scanning electron microscope (FESEM) images show that the Ag NCs with controllable size are homogeneously decorated onto the walls of NTs with random yet uniform distribution. X-ray diffraction (XRD) results confirm the formation of anatase TiO2 NTs and Ag NCs, which can be well indexed to standard patterns. The decoration of metallic Ag NCs onto the surface of NTs demonstrates a significant enhancement in the photoconversion efficiency as compared to that of pristine TiO2 NTs. Additionally, the as-prepared nanocomposite film also shows improved efficiency when used as a photocatalyst platform in the production of hydrogen gas. Such improvement in the performance of water splitting and photocatalytic hydrogen gas production activity can be credited to the surface plasmonic resonance of Ag NCs present on the surface of the NTs, which renders improved light absorption and better charge separation. The current work can serve as a model of study for designing more advanced nanoarchitecture photoelectrode for renewable energy application.


2004 ◽  
Vol 59 (3) ◽  
pp. 259-263 ◽  
Author(s):  
Uwe Monkowius ◽  
Stefan Nogai ◽  
Hubert Schmidbaur

High-yield syntheses of the bromide (1a) and picrate salts (1b) of the 5-azonia-spiro[4]nonane cation [(CH2)4N(CH2)4]+ are reported. In the single crystal X-ray diffraction analyses of the two salts the spirocyclic quaternary ammonium cations have their five-membered rings in envelop and twist conformations modified by packing forces. The conformation found experimentally for 1a has C2-symmetry as predicted for the gas phase by quantum-chemical calculations (RI-DFT, RI-MP2), but the five-membered rings are intermediate between the expected envelop and the twist form. For 1b, both of the two independent cations can be described as a combination of rings in an envelop and a twist conformation. According to the NMR spectra, in solution the cations are highly flexible and pseudosymmetrical (point group D2d)


2011 ◽  
Vol 189-193 ◽  
pp. 1275-1279
Author(s):  
Ying Wang ◽  
Gao Yang Zhao ◽  
Li Yuan

The crystalline phase and morphology of the products formed during the synthesis of yttrium oxide via the hydrothermal treatment yttrium nitrate were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Products with high OH/NO3ratios are formed with the increasing of hydrothermal treatment. The crystalline phases are evolved from Y2(OH)5.14(NO3)0.86•H2O toY4O(OH)9(NO3) and finally Y(OH)3. The hydrothermal reaction conditions play an important role in the synthesis of the microstructures. Results show the particle size and final morphology of samples could be controlled by reaction temperature, reaction time, and OH-concentration. Sheets, hexagonal and needle-like Y2O3powders are obtained with the hydrothermal treatment of yittrium nitrate at 180 oC to 200oC for 2-8 hours at pH 9-13.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Daisuke Ogawa ◽  
Ryo Kitaura ◽  
Takeshi Saito ◽  
Shinobu Aoyagi ◽  
Eiji Nishibori ◽  
...  

Thermally fragile tris(η5-cyclopentadienyl)erbium (ErCp3) molecules are encapsulated in single-wall carbon nanotubes (SWCNTs) with high yield. We realized the encapsulation of ErCp3with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+) is confirmed by X-ray absorption spectrum.


2013 ◽  
Vol 1544 ◽  
Author(s):  
Marco Sommariva ◽  
Harald van Weeren ◽  
Olga Narygina ◽  
Jan-André Gertenbach ◽  
Christian Resch ◽  
...  

ABSTRACTThe sorption processes for hydrogen and carbon dioxide are of considerable, and growing interest, particularly due to their relevance to a society that seeks to replace fossil fuels with a more sustainable energy source. X-ray diffraction allows a unique perspective for studying structural modifications and reaction mechanisms that occur when gas and solid interact. The fundamental challenge associated with such a study is that experiments are conducted while the solid sample is held under a gas pressure. To date in-situ high gas pressure studies of this nature have typically been undertaken at large-scale facilities such as synchrotrons or on dedicated laboratory instruments. Here we report high-pressure XRD studies carried out on a multi-purpose diffractometer. To demonstrate the suitability of the equipment, two model studies were carried out, firstly the reversible hydrogen cycling over LaNi5, and secondly the structural change that occurs during the decomposition of ammonia borane that results in the generation of hydrogen gas in the reaction chamber. The results have been finally compared to the literature. The study has been made possible by the combination of rapid X-ray detectors with a reaction chamber capable of withstanding gas pressures up to 100 bar and temperatures up to 900 °C.


2021 ◽  
Vol 1016 ◽  
pp. 1299-1304
Author(s):  
Naidu Seetala ◽  
Deidre Henderson ◽  
Jumel Jno-Baptiste ◽  
Hao Wen ◽  
Sheng Min Guo

The microstructure and magnetization of SmCo5 micro-particles may be used as feedstock for 3D printing to make miniature strong magnets. Thus, the magnetic response and microstructures of commercially available SmCo5 micro-particles were studied under various heat treatments using a high wattage laser. The magnetization of laser heat treated powders at 50-watt showed an increase in magnetization, while the 75-watt melt showed a little to no change. Unfortunately, the coercivity of both laser heat treated samples decreased significantly. Oxidation during the heat treatment is suspected to result in low coercivity. Purging with argon-gas prior to laser heating showed improved coercivity. To further minimize the oxidation problem a set of SmCo5 powder was reduced prior to laser heat treatment using a constant flow of hydrogen gas while being heated at various temperatures from 100 oC to 400 oC for a period of ~4 hours. The results show that the magnetization generally increases with the temperature, while the coercivity decreases significantly. Another set of SmCo5 was annealed in a vacuum furnace for one hour at temperatures between 200 oC and 400 oC in order to confirm that no hydride phases were formed during reduction. The magnetization and coercivity showed similar variations with annealing temperature to those for the reduced powders confirming that these variations may be due to change in crystal structure rather than formation of hydrides. X-ray Diffraction (XRD) studies were performed to identify the changes in crystal phases.


2021 ◽  
Author(s):  
Rebecca McClain ◽  
Christos D. Malliakas ◽  
Jiahong Shen ◽  
Jiangang He ◽  
Chris Wolverton ◽  
...  

This work uses in situ powder X-ray diffraction studies to observe crystalline phase evolution over the course of multiple K-Bi-Q (Q = S, Se) reactions, thereby constructing a “panoramic” view of each reaction from beginning to end.


2009 ◽  
Vol 24 (7) ◽  
pp. 2391-2399 ◽  
Author(s):  
Hidehiro Sekimoto ◽  
Tetsuya Uda ◽  
Yoshitaro Nose ◽  
Shigeo Sato ◽  
Hiroaki Kakiuchi ◽  
...  

We investigated the reduction of TiO2 in the presence of Ni by nonequilibrium hydrogen gas, including low-temperature hydrogen plasma at 800 °C and supercooled monatomic hydrogen at 1000 °C. TiO2 was reduced to Ti2O3, which is not in equilibrium phase, by low-temperature hydrogen plasma. The results of x-ray diffraction and energy dispersive x-ray analysis in experiments at 1000 °C indicate that the thermodynamical reduction potential of supercooled monatomic hydrogen is almost the same as atmospheric hydrogen gas. However, the wide Ti3O5 layer formed only in the case of the reduction at 1000 °C by supercooled monatomic hydrogen. With these experimental facts, we speculate that the reduction mechanism by nonequilibrium hydrogen consists of two steps; the releasing energy process and the relaxation process. We can explain the difference of reduction products by nonequilibrium hydrogen gas on the assumption of the rate of the relaxation process between 800 and 1000 °C.


Sign in / Sign up

Export Citation Format

Share Document