Mass Spectrometric Analysis of N2-Formation Induced by the Oxidation of Hydrazine and Hydroxylamine in Flash Illuminated Thylakoid Preparations of the Filamentous Cyanobacterium Oscillatoria chalybea

1991 ◽  
Vol 46 (7-8) ◽  
pp. 629-634 ◽  
Author(s):  
P. He ◽  
K. P. Bader ◽  
G . H. Schmid

In tobacco chloroplasts hydrazine-dependent dinitrogen formation measured by mass spectrometry as the consequence of short saturating light flashes is always linked to a substantial oxygen uptake (G. Renger, K. P. Bader, and G. H. Schmid, Biochim. Biophys. Acta 1015, 288, 1990). However, in thylakoids of the filamentous cyanobacterium Oscillatoria chalybea this dinitrogen formation is not linked to an apparent O2-uptake, even at the high concentration of 1 mм hydrazine. Whereas in tobacco chloroplasts Tris-treatment does not affect hydrazine dependent dinitrogen formation up to a concentration of 3 mм hydrazine, Tris-treatment of thylakoids of O. chalybea affects strongly both oxygen evolution and dinitrogen evolution under a single turnover flash as well as under ten flashes. In contrast to tobacco chloroplasts, the presence of hydrazine up to concentrations of 3 mм does not substantially affect photosynthetic O2-evolution. The observed dinitrogen evolution is affected by DCMU regardless whether induced by a single turnover flash or by ten flashes, whereas in tobacco dinitrogen evolution and the O2-uptake linked to it (which is not observed in the cyanobacterium) were clearly not affected by DCMU in the single turnover flash. In Oscillatoria the earlier described Photosystem II-mediated H2O2 formation and decomposition is influenced by hydrazine. In the presence of 300 μм hydrazine the usually present O2-uptake leading to H2O2 formation appears diminished.

2015 ◽  
Vol 7 (23) ◽  
pp. 9808-9816 ◽  
Author(s):  
Steven L. Reeber ◽  
Sneha Gadi ◽  
Sung-Ben Huang ◽  
Gary L. Glish

Paper spray ionization enables the rapid mass spectrometric analysis of environmental samples without the use of chromatography or sample cleanup techniques.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Yulanda M. Williamson ◽  
Hercules Moura ◽  
David Schieltz ◽  
Jon Rees ◽  
Adrian R. Woolfitt ◽  
...  

Bordetella pertussis(Bp) is the causative agent of pertussis, a vaccine preventable disease occurring primarily in children. In recent years, there has been increased reporting of pertussis. Current pertussis vaccines are acellular and consist of Bp proteins including the major virulence factor pertussis toxin (Ptx), a 5-subunit exotoxin. Variation in Ptx subunit amino acid (AA) sequence could possibly affect the immune response. A blind comparative mass spectrometric (MS) analysis of commercially available Ptx as well as the chemically modified toxoid (Ptxd) from licensed vaccines was performed to assess peptide sequence and AA coverage variability as well as relative amounts of Ptx subunits. Qualitatively, there are similarities among the various sources based on AA percent coverages and MS/MS fragmentation profiles. Additionally, based on a label-free mass spectrometry-based quantification method there is differential relative abundance of the subunits among the sources.


1994 ◽  
Vol 49 (1-2) ◽  
pp. 115-124 ◽  
Author(s):  
O. Kruse ◽  
A. Radunz ◽  
G. H. Schmid

Photosystem II-particles from the cyanobacterium Oscillatoria chalybea were isolated by fractionating centrifugation. Purification of these particles was achieved by a 22 hours centrifugation over a linear sucrose density gradient at 217.500xg. The obtained particle fraction exhibited an oxygen evolution activity which corresponded to three times the rate of intact cells and to five times the rate of intact thylakoids. The chlorophyll protein ratio was 1:10 and the ratio manganese/chlorophyll 1:34. SDS-polyacrylamide gel electrophoresis showed that the photosystem Il-fraction is composed of the core peptides D1 and D2, the chlorophyll-binding peptides CP 43 and CP 47, the extrinsic 33 kDa peptide (manganese stabilizing peptide, MSP) and phycobiliproteins with molecular masses between 16 to 20 kDa. Cyt b559 was not detected in our gel electrophoresis assay. Part of the peptides of the 30 kDa-region (D1, D2, MSP) occurred as aggregates with a molecular mass of 60 to 66 kDa. The D 1-peptide was isolated from the PS Il-preparation by SDS-gel electrophoresis. The intrinisic peptide reacts in the Western blot procedure with the antiserum to phosphatidylglycerol and with the antiserum to β-carotene. Incubation of the peptide with the antisera to monogalactosyldiglyceride, sulfoquinovosyldiglyceride and zeaxanthine resulted negatively. The binding of phosphatidylglycerol onto the D 1-peptide was confirmed by lipid analysis in HPLC and fatty acid analysis by gas chromatography. Only this lipid, respectively the typical fatty acid mixture of this lipid was detected. The lipid is characterized by the fact that the hexadecenoic acid does not exhibit trans-configuration, as is true for phosphatidylglycerol of higher plants and algae, but occurs in cis-configuration. With the antibody being directed towards the glycerol-phosphate residue and not towards the fatty acids, it can be concluded from the reaction of the antibodies with the bound lipid that the lipid is bound to the peptide via the fatty acid. The negatively charged phosphatidylglycerol increases the hydrophobicity of the peptide and leads to a negatively charged surface favouring binding of cations like calcium and magnesium. The fact that incubation of this PS Il-fraction with phospholipase inhibits photosynthetic activity by 25% which can be fully restored by addition of phosphatidylglycerol, shows that bound phosphatidylglycerol has a functional role.


2017 ◽  
Vol 21 (11) ◽  
pp. 759-768 ◽  
Author(s):  
Yunlong Zhang ◽  
Ran Zhang ◽  
Milad Nazari ◽  
Michael C. Bagley ◽  
Eric S. Miller ◽  
...  

Tolyporphins are unusual tetrapyrrole macrocycles produced by the filamentous cyanobacterium–microbial community HT-58-2, the only known source to date. Numerous cyanobacterial samples have been collected worldwide but most have not been screened for secondary metabolites. Identification of tolyporphins typically has entailed lipophilic extraction followed by chromatographic fractionation and spectroscopic and/or mass spectrometric analysis. For quantitation, lengthy lipophilic extraction, sample processing and HPLC separation are needed. Examination by MALDI-TOF-MS (with the matrix 1,5-diaminonaphthalene) of lipophilic crude extracts of small-scale HT-58-2 samples (2 mL) without chromatographic fractionation enabled semi-quantitation of tolyporphin A over a 41-day growth period. Screening for tolyporphin A in intact or slightly sheared and vortexed HT-58-2 samples (no lipophilic extraction), and confirmation of identity by tandem MS, were carried out by IR-MALDESI-FTMS. Tolyporphin A was identified by the molecular ion and four characteristic fragments. The molecular ion of chlorophyll [Formula: see text] also was observed. The sheared and vortexed sample contained substantial numbers of intact cells as demonstrated by regrowth of the filamentous cyanobacterium–microbial culture. The semi-quantitative and rapid qualitative methods developed herein should facilitate examination of other tolyporphin-producing organisms among the vast worldwide strains of cyanobacteria as well as investigation of the biosynthesis of tolyporphins.


Sign in / Sign up

Export Citation Format

Share Document