Curcumin, the main active constituent of turmeric (Curcuma longa L.), induces apoptosis in hepatic stellate cells by modulating the abundance of apoptosis-related growth factors

2015 ◽  
Vol 70 (11-12) ◽  
pp. 281-285 ◽  
Author(s):  
Ya-Jun He ◽  
Kenny Kuchta ◽  
Xia Lv ◽  
Yu Lin ◽  
Guo-Rong Ye ◽  
...  

Abstract In order to elucidate the mechanism of action of curcumin against hepatic fibrosis, cultured rat hepatic stellate cells (HSC) (HSC-T6) were incubated with curcumin for 24 h, after which apoptosis was measured by flow-cytometry. The protein levels of the pro-apoptotic factors Fas and p53b as well as of the anti-apoptotic factor Bcl-2 were monitored by immunocytochemical ABC staining after incubation with curcumin for 24 h. In the case of 20 μM curcumin, not only was the respective apoptosis index increased, but also the abundance of the pro-apoptotic factors Fas and p53 were amplified, whereas that of the anti-apoptotic factor Bcl-2 decreased. All these effects were highly reproducible (P<0.05). Consequently, curcumin has an up-regulating effect on pro-apoptotic factors like Fas and p53 as well as a down-regulating effect of the anti-apoptotic factor Bcl-2, thus inducing apoptosis in HSC.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Justin D. Schumacher ◽  
Grace L. Guo

Fibroblast growth factors (FGFs) are a family of growth factors critically involved in developmental, physiological, and pathological processes, including embryogenesis, angiogenesis, wound healing, and endocrine functions. In the liver, several FGFs are produced basally by hepatocytes and hepatic stellate cells (HSCs). Upon insult to the liver, expression of FGFs in HSCs is greatly upregulated, stimulating hepatocyte regeneration and growth. Various FGF isoforms have also been shown to directly induce HSC proliferation and activation thereby enabling autocrine and paracrine regulation of HSC function. Regulation of HSCs by the endocrine FGFs, namely, FGF15/19 and FGF21, has also recently been identified. With the ability to modulate HSC proliferation and transdifferentiation, targeting FGF signaling pathways constitutes a promising new therapeutic strategy to treat hepatic fibrosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hong Jiang ◽  
Jia Liu ◽  
Kun Zhang ◽  
Qingxin Zeng

Objective. This study aimed to investigate the effects of saikosaponin D (SSd) on the proliferation and apoptosis of the HSC-T6 hepatic stellate cell line and determine the key pathway that mediates SSd’s function. Methods. Cell viability was detected using the CCK-8 kit. The EdU kit and flow cytometry were used to examine cell proliferation. The Annexin V-FITC/PI double staining kit and flow cytometry were used to examine cell apoptosis. Western blot analysis was performed to analyze the expression levels of LC3, Ki67, cleaved caspase 3, Bax, and Bcl2. Autophagosome formation was detected by LC3-GFP adenovirus transfection. Results. SSd inhibits the proliferation and promotes the apoptosis of acetaldehyde-activated HSC-T6 cells. SSd treatment increased the expression of cleaved caspase 3 and Bax but reduced that of Ki67 and Bcl2. The same concentration of SSd barely influenced the growth of normal rat liver BRL-3A cells. SSd upregulated LC3-II expression and induced autophagosome formation. Autophagy agonist rapamycin had the same effect as SSd and autophagy inhibitor 3-methyladenine could neutralize the effect of SSd in acetaldehyde-activated HSC-T6 cells. Conclusions. SSd could inhibit the proliferation and promote the apoptosis of HSC-T6 cells by inducing autophagosome formation.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Novriantika Lestari ◽  
Melva Louisa ◽  
Vivian Soetikno ◽  
Averina Geffanie Suwana ◽  
Putra Andito Ramadhan ◽  
...  

Liver fibrosis is characterized by excessive accumulation of extracellular matrix in chronic liver injury. Alcohol-induced fibrosis may develop into cirrhosis, one of the major causes of liver disease mortality. Previous studies have shown that alpha mangostin can decrease ratio of pSmad/Smad and pAkt/Akt in TGF-β-induced liver fibrosis model in vitro. Further investigation of the mechanism of action of alpha mangostin in liver fibrosis model still needs to be done. The present study aimed to analyze the mechanism of action of alpha mangostin on acetaldehyde induced liver fibrosis model on TGF-β and ERK 1/2 pathways. Immortalized HSCs, LX-2 cells, were incubated with acetaldehyde, acetaldehyde with alpha mangostin (10 and 20 μM), or alpha mangostin only (10 μM). Sorafenib 10 μM was used as positive control. LX-2 viability was counted using trypan blue exclusion method. The effect of alpha mangostin on hepatic stellate cells proliferation and activation markers and its possible mechanism of action via TGF-β and ERK1/2 were studied. Acetaldehyde was shown to increase proliferation and expression of profibrogenic and migration markers on HSC, while alpha mangostin treatment resulted in a reduced proliferation and migration of HSC and decreased Ki-67 and pERK 1/2 expressions. These findings were followed with decreased expressions and concentrations of TGF-β; decreased expression of Col1A1, TIMP1, and TIMP3; increased expression of MnSOD and GPx; and reduction in intracellular reactive oxygen species. These effects were shown to be dose dependent. Therefore, we conclude that alpha mangostin inhibits hepatic stellate cells proliferation and activation through TGF-β and ERK 1/2 pathways.


2003 ◽  
Vol 124 (1) ◽  
pp. 147-159 ◽  
Author(s):  
Changqing Yang ◽  
Michael Zeisberg ◽  
Barbara Mosterman ◽  
Akulapalli Sudhakar ◽  
Udaya Yerramalla ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xi Zhou ◽  
Li Yu ◽  
Min Zhou ◽  
Pengfei Hou ◽  
Long Yi ◽  
...  

Abstract Background This study investigated the mechanisms underlying the preventive effect of dihydromyricetin (DHM) against liver fibrosis involving hepatic stellate cells (HSCs) and hepatic natural killer (NK) cells. Methods A carbon tetrachloride (CCl4)-induced liver fibrosis model was established in C57BL/6 mice to study the antifibrotic effect of DHM based on serum biochemical parameters, histological and immunofluorescence stainings, and the expression of several fibrosis-related markers. Based on the immunoregulatory role of DHM, the effect of DHM on NK cell activation ex vivo was evaluated by flow cytometry. Then, we investigated whether DHM-induced autophagy was involved in HSCs inactivation using enzyme-linked immunosorbent assays, transmission electron microscopy, and western blot analysis. Thereafter, the role of DHM in NK cell-mediated killing was studied by in vitro coculture of NK cells and HSCs, with subsequent analysis by flow cytometry. Finally, the mechanism by which DHM regulates NK cells was studied by western blot analysis. Results DHM ameliorated liver fibrosis in C57BL/6 mice, as characterized by decreased serum alanine transaminase and aspartate transaminase levels, decreased expressions of collagen I alpha 1 (CoL-1α1), collagen I alpha 2 (CoL-1α2), tissue inhibitor of metalloproteinases 1 (TIMP-1), α-smooth muscle actin (α-SMA) and desmin, as well as increased expression of matrix metalloproteinase 1 (MMP1). Interestingly, HSCs activation was significantly inhibited by DHM in vivo and in vitro. As expected, DHM also upregulated autophagy-related indicators in liver from CCl4-treated mice. DHM also prevented TGF-β1-induced activation of HSCs in vitro by initiating autophagic flux. In contrast, the autophagy inhibitor 3-methyladenine markedly abolished the antifibrotic effect of DHM. Surprisingly, the frequency of activated intrahepatic NK cells was significantly elevated by DHM ex vivo. Furthermore, DHM enhanced NK cell-mediated killing of HSCs by increasing IFN-γ expression, which was abolished by an anti-IFN-γ neutralizing antibody. Mechanistically, DHM-induced IFN-γ expression was through AhR-NF-κB/STAT3 pathway in NK cells. Conclusion These results demonstrated that DHM can ameliorate the progression of liver fibrosis and inhibition of HSCs activation by inducing autophagy and enhancing NK cell-mediated killing through the AhR-NF-κB/STAT3-IFN-γ signaling pathway, providing new insights into the preventive role of DHM in liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document