Dual action of the inhibitors of cyclin-dependent kinases: targeting of the cell-cycle progression and activation of wild-type p53 protein

2005 ◽  
Vol 15 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Józefa Wesierska-Gadek ◽  
Gerald Schmid
1996 ◽  
Vol 16 (8) ◽  
pp. 4445-4455 ◽  
Author(s):  
K M Latham ◽  
S W Eastman ◽  
A Wong ◽  
P W Hinds

Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.


2000 ◽  
Vol 11 (5) ◽  
pp. 1597-1609 ◽  
Author(s):  
Karen E. Ross ◽  
Philipp Kaldis ◽  
Mark J. Solomon

Eukaryotic cell cycle progression is controlled by a family of protein kinases known as cyclin-dependent kinases (Cdks). Two steps are essential for Cdk activation: binding of a cyclin and phosphorylation on a conserved threonine residue by the Cdk-activating kinase (CAK). We have studied the interplay between these regulatory mechanisms during the activation of the major Saccharomyces cerevisiaeCdk, Cdc28p. We found that the majority of Cdc28p was phosphorylated on its activating threonine (Thr-169) throughout the cell cycle. The extent of Thr-169 phosphorylation was similar for monomeric Cdc28p and Cdc28p bound to cyclin. By varying the order of the addition of cyclin and Cak1p, we determined that Cdc28p was activated most efficiently when it was phosphorylated before cyclin binding. Furthermore, we found that a Cdc28pT169Amutant, which cannot be phosphorylated, bound cyclin less well than wild-type Cdc28p in vivo. These results suggest that unphosphorylated Cdc28p may be unable to bind tightly to cyclin. We propose that Cdc28p is normally phosphorylated by Cak1p before it binds cyclin. This activation pathway contrasts with that in higher eukaryotes, in which cyclin binding appears to precede activating phosphorylation.


2021 ◽  
Vol 118 (44) ◽  
pp. e2102420118
Author(s):  
Alyssa M. Klein ◽  
Lynn Biderman ◽  
David Tong ◽  
Bita Alaghebandan ◽  
Sakina A. Plumber ◽  
...  

The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2–Murine Double Minute X (MDM2–MDMX) heterodimer. The role of MDM2–MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.


2019 ◽  
Vol 19 (7) ◽  
pp. 561-570 ◽  
Author(s):  
Hamidreza Maroof ◽  
Soussan Irani ◽  
Armin Arianna ◽  
Jelena Vider ◽  
Vinod Gopalan ◽  
...  

Background: The clinical pathological features, as well as the cellular mechanisms of miR-195, have not been investigated in thyroid carcinoma. Objective: The aim of this study is to identify the interactions of vascular endothelial growth factor (VEGF), p53 and miR-195 in thyroid carcinoma. The clinical and pathological features of miR-195 were also investigated. Methods: The expression levels of miR-195 were identified in 123 primary thyroid carcinomas, 40 lymph nodes with metastatic papillary thyroid carcinomas and seven non-neoplastic thyroid tissues (controls) as well as two thyroid carcinoma cell lines, B-CPAP (from metastasizing human papillary thyroid carcinoma) and MB-1 (from anaplastic thyroid carcinoma), by the real-time polymerase chain reaction. Using Western blot and immunofluorescence, the effects of exogenous miR-195 on VEGF-A and p53 protein expression levels were examined. Then, cell cycle and apoptosis assays were performed to evaluate the roles of miR-195 in cell cycle progression and apoptosis. Results: The expression of miR-195 was downregulated in majority of the papillary thyroid carcinoma tissue as well as in cells. Introduction of exogenous miR-195 resulted in downregulation of VEGF-A and upregulation of p53 protein expressions. Upregulation of miR-195 in thyroid carcinoma cells resulted in cell cycle arrest. Moreover, we demonstrated that miR-195 inhibits cell cycle progression by induction of apoptosis in the thyroid carcinoma cells. Conclusion: Our findings showed for the first time that miR-195 acts as a tumour suppressor and regulates cell cycle progression and apoptosis by targeting VEGF-A and p53 in thyroid carcinoma. The current study exhibited that miR-195 might represent a potential therapeutic target for patients with thyroid carcinomas having aggressive clinical behaviour.


2019 ◽  
Vol 12 (579) ◽  
pp. eaav1439 ◽  
Author(s):  
Olha M. Koval ◽  
Emily K. Nguyen ◽  
Velarchana Santhana ◽  
Trevor P. Fidler ◽  
Sara C. Sebag ◽  
...  

The role of the mitochondrial Ca2+uniporter (MCU) in physiologic cell proliferation remains to be defined. Here, we demonstrated that the MCU was required to match mitochondrial function to metabolic demands during the cell cycle. During the G1-S transition (the cycle phase with the highest mitochondrial ATP output), mitochondrial fusion, oxygen consumption, and Ca2+uptake increased in wild-type cells but not in cells lacking MCU. In proliferating wild-type control cells, the addition of the growth factors promoted the activation of the Ca2+/calmodulin-dependent kinase II (CaMKII) and the phosphorylation of the mitochondrial fission factor Drp1 at Ser616. The lack of the MCU was associated with baseline activation of CaMKII, mitochondrial fragmentation due to increased Drp1 phosphorylation, and impaired mitochondrial respiration and glycolysis. The mitochondrial fission/fusion ratio and proliferation in MCU-deficient cells recovered after MCU restoration or inhibition of mitochondrial fragmentation or of CaMKII in the cytosol. Our data highlight a key function for the MCU in mitochondrial adaptation to the metabolic demands during cell cycle progression. Cytosolic CaMKII and the MCU participate in a regulatory circuit, whereby mitochondrial Ca2+uptake affects cell proliferation through Drp1.


2010 ◽  
Vol 5 (2) ◽  
pp. 180-186 ◽  
Author(s):  
Hua Su ◽  
Ling Su ◽  
Qiuxia He ◽  
Jing Zhao ◽  
Baoxiang Zhao ◽  
...  

1997 ◽  
Vol 110 (15) ◽  
pp. 1813-1820
Author(s):  
D. Germain ◽  
J. Hendley ◽  
B. Futcher

Cell cycle progression is mediated by waves of specific cyclin dependent kinases (CDKs) in all eukaryotes. Cyclins are degraded by the ubiquitin pathway of proteolysis. The recent identification of several components of the cyclin proteolysis machinery has highlighted both the importance of proteolysis at multiple transition points in the cell cycle and the involvement of other substrates degraded by the same machinery. In this study, we have investigated the effects of DNA damage on the cyclin proteolytic machinery in Saccharomyces cerevisiae. We find that the half-life of the B-type cyclin Clb5 is markedly increased following DNA damage while that of G1 cyclins is not. This effect is independent of cell cycle phase. Clb5 turnover requires p34CDC28 activity. Stabilisation of Clb5 correlates with an increase in tyrosine phosphorylation of p34CDC28, but stabilisation does not require this tyrosine phosphorylation. The stabilisation is independent of the checkpoint genes Mec1 and Rad53. These observations establish a new link between the regulation of proteolysis and DNA damage.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Larissa Kido ◽  
Eun-Ryeong Hahm ◽  
Valeria Cagnon ◽  
Mário Maróstica ◽  
Shivendra Singh

Abstract Objectives Piceatannol (PIC) is a polyphenolic and resveratrol analog that is found in many vegetables consumed by humans. Like resveratrol, PIC has beneficial effects on health due to its anti-inflammatory, anti-oxidative and anti-proliferative features. However, the molecular targets of PIC in prostate cancer (PCa), which is the second most common cancer in men worldwide, are still poorly understood. Preventing cancer through dietary sources is a promising strategy to control diseases. Therefore, the aim of present study was to investigate the molecular mechanistic of actions of PIC in PCa cell lines with different genetic background common to human prostate cancer. Methods Human PCa cell lines (PC-3, 22Rv1, LNCaP, and VCaP) were treated with different doses of PIC (5–40 µM) and used for cell viability assay, measurement of total free fatty acids (FFA) and lactate, and cell cycle distribution. Results PIC treatment dose- and time-dependently reduced viability in PC-3 (androgen-independent, PTEN null, p53 null) and VCaP cells (androgen-responsive, wild-type PTEN, mutant p53). Because metabolic alterations, such as increased glucose and lipid metabolism are implicated in pathogenesis of in PCa, we tested if PIC could affect these pathways. Results from lactate and total free fatty acid assays in VCaP, 22Rv1 (castration-resistant, wild-type PTEN, mutant p53), and LNCaP (androgen-responsive, PTEN null, wild-type p53) revealed no effect of PIC on these metabolisms. However, PIC treatment delayed cell cycle progression in G0/G1 phase concomitant with the induction of apoptosis in both LNCaP and 22Rv1 cells, suggesting that growth inhibitory effect of PIC in PCa is associated with cell cycle arrest and apoptotic cell death at least LNCaP and 22Rv1 cells. Conclusions While PIC treatment does not alter lipid or glucose metabolism, cell cycle arrest and apoptosis induction are likely important in anti-cancer effects of PIC. Funding Sources São Paulo Research Foundation (2018/09793-7).


1995 ◽  
Vol 15 (10) ◽  
pp. 5482-5491 ◽  
Author(s):  
R C Santos ◽  
N C Waters ◽  
C L Creasy ◽  
L W Bergman

The PHO85 gene of Saccharomyces cerevisiae encodes a cyclin-dependent kinase involved in both transcriptional regulation and cell cycle progression. Although a great deal is known concerning the structure, function, and regulation of the highly homologous Cdc28 protein kinase, little is known concerning these relationships in regard to Pho85. In this study, we constructed a series of Pho85-Cdc28 chimeras to map the region(s) of the Pho85 molecule that is critical for function of Pho85 in repression of acid phosphatase (PHO5) expression. Using a combination of site-directed and ethyl methanesulfonate-induced mutagenesis, we have identified numerous residues critical for either activation of the Pho85 kinase, interaction of Pho85 with the cyclin-like molecule Pho80, or substrate recognition. Finally, analysis of mutations analogous to those previously identified in either Cdc28 or cdc2 of Schizosaccharomyces pombe suggested that the inhibition of Pho85-Pho80 activity in mechanistically different from that seen in the other cyclin-dependent kinases.


2018 ◽  
Vol 115 (13) ◽  
pp. 3344-3349 ◽  
Author(s):  
Amit Kumar ◽  
Mohanraj Gopalswamy ◽  
Annika Wolf ◽  
David J. Brockwell ◽  
Mechthild Hatzfeld ◽  
...  

Cell cycle progression is tightly regulated by cyclin-dependent kinases (CDKs). The ankyrin-repeat protein p19INK4dfunctions as a key regulator of G1/S transition; however, its molecular mode of action is unknown. Here, we combine cell and structural biology methods to unravel the mechanism by which p19INK4dcontrols cell cycle progression. We delineate how the stepwise phosphorylation of p19INK4dSer66 and Ser76 by cell cycle-independent (p38) and -dependent protein kinases (CDK1), respectively, leads to local unfolding of the three N-terminal ankyrin repeats of p19INK4d. This dissociates the CDK6–p19INK4dinhibitory complex and, thereby, activates CDK6. CDK6 triggers entry into S-phase, whereas p19INK4dis ubiquitinated and degraded. Our findings reveal how signaling-dependent p19INK4dunfolding contributes to the irreversibility of G1/S transition.


Sign in / Sign up

Export Citation Format

Share Document