scholarly journals Comparative phytochemical and in vitro antimicrobial activities of the leaf extracts of two medicinal plants growing in North-East, Nigeria

2018 ◽  
Vol 7 (2) ◽  
pp. 61-67
Author(s):  
Hamidu Usman ◽  
Muhammad Awwal Tijjani ◽  
Abudlkarim Hassan ◽  
Zainab Babagana Aji
Author(s):  
Aisha Abdulrazak ◽  

The search for antimalarial compounds has been necessitated by the resistance of Plasmodium falciparum to almost all antimalarial drugs. The aim of this research was to determine in-vitro antimalarial activity of extracts of some indigenous plants species in Kebbi State. Plant extraction was carried-out by maceration using ethanol and water as solvent. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of P. falciparum using WHO method of in-vitro micro test. Phytochemical screening was also carried out on the extract to deduce the active chemicals present in the plant extract. All plant extracts demonstrate dose dependent antimicrobial activities with IC50 Less than 50%. However highest growth inhibition of the P. falciparum was demonstrated by aqueous and ethanol extract of A. indica with IC50 7.4µg/ml and 8.6µg/ml respectively followed by ethanol and aqueous extract of C. occidentalis with IC50 15.3µg/ml and 18.0µg/ml respectively. Least antimalarial activity was demonstrated by aqueous extract of M. oleifera with IC50 33.5µg/ml while ethanolic extract of M. oleifera demonstrated IC50 of 20.50µg/ml. M. indica ethanolic and aqueous extract also demonstrated moderate antimalarial activity with IC50 18.8µg/ml and 24.5µg/ml. The phytochemical screening of medicinal plants showed the presence of tannins, saponins, alkaloids, flavonoid, phenol and cardiac glycosides in the extracts, which may be responsible for the antiplasmodial activity. This result justifies the traditional use of the plant in malaria treatment and further research is suggested to identify and characterize the active principles from the plants. Keywords: Antimalaria, Invitro, Medicinal Plants, Malaria, Kebbi


2019 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Murni Halim

A study was carried out to screen for phytochemical constituents and assess the antioxidant and antimicrobial activities of Senna alata and Senna tora leaf extracts. The leaves were first dried at room temperature and 50°C in an oven prior to solvent extraction using ethanol and methanol. The in-vitro qualitative assays showed that both S. alata and S. tora leaf extracts contained bioactive and secondary metabolites components such as tannins, steroids, saponin, terpenoids, glycosides, flavonoids and phenols. The antioxidant activity and capacity test were carried out by conducting free radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and Ferric reduction antioxidant plasma (FRAP) assays. Both assays showed S. tora leaf extract has higher antioxidant capacity than S. alata leaf extract. The efficacy of these leaf extracts were tested against skin pathogens through agar well diffusion method. S. alata extract showed an inhibition zone (1.15 – 1.59 mm) against Pseudomonas aeruginosa while S. tora extracts exhibited a strong antimicrobial activity against S. epidermidis (inhibition zone of 12 – 16.94 mm) followed by P. aeruginosa (inhibition zone of 1 – 1.59 mm). Nonetheless, no inhibition zone was observed for S. aureus by both leaf extracts. The phytochemicals and antioxidant constituents as well as inhibitory potential on skin pathogens possessed by S. alata and S. tora leave highlighted their potential utilization in the development of natural drugs or cosmetics to treat skin related diseases or infections.


Author(s):  
Chutima Kaewpiboon ◽  
Kriengsak Lirdprapamongkol ◽  
Chantragan Srisomsap ◽  
Pakorn Winayanuwattikun ◽  
Tikamporn Yongvanich ◽  
...  

2017 ◽  
Vol 11 (1) ◽  
pp. 352-359 ◽  
Author(s):  
Gemechu Ameya ◽  
Aseer Manilal ◽  
Behailu Merdekios

Background: Controlling infectious disease using medicinal plants is the oldest healthcare known to mankind. Regardless of the enormous advances observed in modern medicine, medicinal plants are still playing vital roles. However, only a small proportion of medicinal plants are examined for bioactive compounds which may vary in different factors. This study aimed to evaluate phytochemical constituent and antimicrobial activities of Nicotiana tabacum L. extracted by different solvents against three set of bacteria. Methods: Nicotiana tabacum L. was collected from the Western Ethiopia and extracted in seven organic solvents. An in-vitro anti-bacterial activity of plant extracts was carried out by agar well diffusion assay against microbial type culture collection of human pathogens, clinical bacterial isolates, and biofilm forming bacteria. Gas Chromatographic and Mass Spectroscopic (GC-MS) analysis was used to determine the phytochemical constituents. Results: Antimicrobial activities of plant extract vary by extraction solvents; and ethyl acetate based extracts showed better antimicrobial activities. Of the experimental organisms, biofilm forming uropathogens were the most sensitive while clinical isolates were quite resistant. Analysis of the active ethyl acetate extract by GC-MS evinced a mixture of five volatile compounds; and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S) was the major compound detected. The overall results of the present study revealed that N. tabacum L extract has high antimicrobial activities against biofilm forming uropathogens. Conclusion: High antimicrobial activity was observed in ethyl acetate extract of N. tabacum against the biofilm forming bacteria whereas the clinically isolated bacteria were the most resistant group. The antibacterial property demonstrated could be due to Pyridine, 3-(1-methyl-2-pyrrolidinyl)-(S) with a broad spectrum of activity.


2020 ◽  
Vol 1 (1) ◽  
pp. 33-40
Author(s):  
Renu Jangid ◽  
Tahira vbegum

Plant products have been used as medicines against fungal infectious diseases. In this research antimycotic activity of the leaf extracts of five medicinal plants (Nerium indicum, Catheranthus roseus, Lantana camera, Ziziphus mauritiana) were tested against three dermatophytes (Trichophyton mentagrophytes, Trichophyton rubrum and Microsporum. gypseum). Development of more effective and less toxic antimycotic agents is required for the treatment of dermatophytosis. The plant materials were extracted with methanol, ethanol and diethyl ether solvent to investigate their antimycotic activities in Vitro. Ethanol and methanol extracts of all selected medicinal plants were showed the positive activity against all tested dermatophytes. Diethyl ether extract was showed lowest activity against T. mentagrophytes and T. rubrum and showed moderate activity against M. gypseum. The three dermatophytes differed with regard to their susceptibility to plant extracts.


2020 ◽  
Vol 14 (3) ◽  
pp. 1855-1861
Author(s):  
Isra Tayseer ◽  
Hanan Azzam ◽  
Nehaya Al-Karablieh ◽  
Amal Mayyas ◽  
Talal Aburjai

The present study was conducted to assess the in vitro activities of folk medicinal plants in combination with levofloxacin against TG1 and mutant KAM3-1(∆acrB-∆tolC) Escherichia coli strains. Plants were chosen based on their traditional use in combination with antibiotics among laymen. Standard protocols were followed to examine the antimicrobial activity of plant extracts and levofloxacin against E. coli in term of their minimum inhibitory concentrations (MICs) and to evaluate the plant extracts-levofloxacin interaction using checkerboard method. Among the twelve plants investigated, Thymus vulgaris, Zingiber officinale, Teucrium polium, Matricaria chamomilla and Curcuma longa had the best antimicrobial activities against E. coli strains with MIC values at 250 μg/ml. It is noteworthy to mention that other folk plants extracts reveled no effects against E coli strains. Furthermore, additive interactions were observed between levofloxacin and T. polium or T. vulgaris against E. coli wild-type TG1 strain. There was no antagonism being observed in this study. The detection of additive interaction between the extracts and levofloxacin demonstrates the prospective of these folk medicinal plants as a source of compounds to modulate antibiotic resistance.


2021 ◽  
Author(s):  
Bresler Swanepoel ◽  
Trevor C Koekemoer ◽  
Luanne Venables ◽  
Elsabe Cloete ◽  
Nonhlanhla P Khumalo ◽  
...  

Ethnopharmacological relevance: Lippia javanica leaves are popular in traditional food, medicine and for insecticidal uses in various Africa countries and North-East India. Anecdotal evidence suggests that it is safe to use but limited animal studies suggested potential toxicity at high dosages, including hepatotoxicity. Aim of the study: To screen for potential hepatotoxicity of L. javanica leaf extracts in vitro, thereby contributing to its toxicological profile for safe use in food and topical applications. Materials and methods: High content analysis techniques and fluorescent dyes were used to monitor C3A hepatocarcinoma cells for changes in morphological features that are associated with development of mitotoxicity, steatosis, oxidative stress, and lysosomal dysfunction. Results: No changes were observed in cell viability, reactive oxygen species or lysosomal content at concentrations up to 200 μg/ml in C3A cells. Mitochondrial membrane potential was reduced by approximately 10% but this effect was not dose-dependent nor was it accompanied by a reduction in mitochondrial content. A dose-dependent decrease was observed in neutral lipid content. Conclusion: The results from this in vitro study suggest that L. javanica leaf extracts is not anticipated to be hepatotoxic at concentrations in the range that is assumed for food or topical use.


Author(s):  
Do Thi Thuy Linh ◽  
Hoang Thanh Duong ◽  
Nguyen Tuan Hiep ◽  
Pham Thanh Huyen ◽  
Nguyen Minh Khoi ◽  
...  

 This study develops a high performance liquid chromatography with ultraviolet detection (HPLC-UV) for simultaneous quantification of hederacoside C and α-hederin in Hedera nepalensis K. Koch. The method proposed in this study was validated in terms of the analytical parameters such as high repeatability, high accuracy and good sensitivity. The method was used to determine the content of hederacoside C and α-hederin in Hedera nepalensis K. Koch, which had been collected in Ha Giang, Lao Cai and Lai Chau. The study results show that the content of hederacoside C and the content of α-hederin ranged from 0.40 to 4.01% and 0.21 – 0.54% based on absolute dry mass, respectively. Keywords Hedera nepalensis K. Koch, hederacoside C, α-hederin, HPLC-UV. References [1] L. Jafri, et al, In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch, Arabian Journal of Chemistry. 10 (2017) 3699-3706. https://doi.org/10.1016/j.arabjc.2014.05.002.[2] S. Saleem, et al, Plants Fagonia cretica L, and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity, Journal of ethnopharmacology. 156 (2014) 26-32. https://doi.org/10.1016/j.jep.2014.08.017[3] D.H. Bich, Medicinal plants and animals for medicine in Vietnam, Vol 1, Science and Technics Publishing House, Hanoi, 2006 (in Vietnamese).[4] National Institute Of Medicinal Materials, List of medicinal plants in Vietnam, Science and Technics Publishing House, Hanoi, 2016 (in Vietnamese).[5] L. Jafri, et al, Hedera nepalensis K. Koch: A Novel Source of Natural Cancer Chemopreventive and Anticancerous Compounds, Phytotherapy research. 30(3) (2016) 447-453. https://doi.org/10.1002/ptr.5546. [6] S. Kanwal, et al, Antioxidant, antitumor activities and phytochemical investigation of Hedera nepalensis K. Koch, an important medicinal plant from Pakistan, Pakistan Journal of Botany. 43 (2011) 85-89. [7] G. Uddin, et al, Biological screening of ethyl acetate extract of Hedera nepalensis stem, African Journal of Pharmacy and Pharmacology. 6(42) (2012) 2934-2937. https://doi.org/10.5897/AJPP12.828 [8] H. Kizu, et al, Studies on Nepalese Crude Drugs, III, On the Saponins of Hedera nepalensis K. Koch, Chemical and Pharmaceutical Bulletin. 33(8) (1985) 3324-3329. https://doi.org/0.1248/cpb.33.3324[9] X. Tong, et al, Extraction and GC-MS Analysis of Volatile Oil from Hedera nepalensis var sinensis, Fine Chemicals. 24(6) (2007) 559-561. [10] EDQM, European Pharmacopoeia, fifth ed., Council of Europe, France, 2015. [11] N.T.H. Mai, et al, Simultaneous Quantification of Hederacoside C and α-Hederin from the Leaves of Hedera helix L. by HPLC, Journal of Medicinal Material. 21(6) (2016). (in Vietnamese).[12] L. Havlíková, et al, Rapid Determination of α-Hederin and Hederacoside C in Extracts of Hedera helix Leaves Available in the Czech Republic and Poland, Natural product communications. 10(9) (2015). https://doi.org/10.1177/1934578X1501000910[13] M. Yu, et al, Determination of Saponins and Flavonoids in Ivy Leaf Extracts Using HPLC-DAD, Journal of Chromatographic Science. 53(4) (2014) 478-483. https://doi.org/10.1093/chromsci/bmu068.[14] EMEA, Validation of analytical procedures: text and methodology Q2 (R1), in International conference on harmonization, Geneva, Switzerland, 2005. [15] W. Horwitz, Official methods of analysis, 12 ed., Vol 1, Association of Official Analytical Chemists, Washington DC, 1975.


Sign in / Sign up

Export Citation Format

Share Document