scholarly journals A Preliminary Look at Using Rainfall Average Recurrence Interval to Characterize Flash Flood Events for Real-time Warning Forecasting

2018 ◽  
Vol 06 (02) ◽  
pp. 13-22 ◽  
Author(s):  
W. SCOTT LINCOLN ◽  
◽  
RACHELLE F. L THOMASON
2020 ◽  
Vol 12 (12) ◽  
pp. 1954 ◽  
Author(s):  
Meihong Ma ◽  
Huixiao Wang ◽  
Pengfei Jia ◽  
Guoqiang Tang ◽  
Dacheng Wang ◽  
...  

NASA’s Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) is a major source of precipitation data, having a larger coverage, higher precision, and a higher spatiotemporal resolution than previous products, such as the Tropical Rainfall Measuring Mission (TRMM). However, there rarely has been an application of IMERG products in flash flood warnings. Taking Yunnan Province as the typical study area, this study first evaluated the accuracy of the near-real-time IMERG Early run product (IMERG-E) and the post-real-time IMERG Final run product (IMERG-F) with a 6-hourly temporal resolution. Then the performance of the two products was analyzed with the improved Rainfall Triggering Index (RTI) in the flash flood warning. Results show that (1) IMERG-F presents acceptable accuracy over the study area, with a relatively high hourly correlation coefficient of 0.46 and relative bias of 23.33% on the grid, which performs better than IMERG-E; and (2) when the RTI model is calibrated with the gauge data, the IMERG-F results matched well with the gauge data, indicating that it is viable to use MERG-F in flash flood warnings. However, as the flash flood occurrence increases, both gauge and IMERG-F data capture fewer flash flood events, and IMERG-F overestimates actual precipitation. Nevertheless, IMERG-F can capture more flood events than IMERG-E and can contribute to improving the accuracy of the flash flood warnings in Yunnan Province and other flood-prone areas.


2021 ◽  
Vol 12 (1-2) ◽  
pp. 117-125
Author(s):  
S Mondal ◽  
L Akter ◽  
HJ Hiya ◽  
MA Farukh

The Sunamganj district is covered by major Haor systems in the north-eastern region of Bangladesh. Flash flood is the most commonly occurring water related disaster in the Haor areas. During the flash flood it is very common that people lost their primary agricultural productions which are the only source of their livelihood. The present study focuses on the effects of 2017 early flash flooding on rice and fish production of Sunamganj Haor areas. The flood caused enormous damage to agriculture such as rice especially Boro rice and fish production on which the Haor dwellers rely upon for their livelihood. The total affected land of Boro rice cultivation in Haors of Sunamganj was 149,224 hectare and the total amount of damaged rice was 393,855 metric ton (MT). The total number of affected farmers was 315,084. The early flash flood also affects the quality of Haor water which caused the death of fishes. The total amount of damaged fish was 49.75 MT and the loss was 158.70 lakh taka. The total number of affected fishermen was 44,445. This findings could be very useful for the environmental scientists to predict the probable future effects on agricultural production due to early flash flood events in Sunamganj Haors areas. Environ. Sci. & Natural Resources, 12(1&2): 117-125, 2019


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1571 ◽  
Author(s):  
Song ◽  
Park ◽  
Lee ◽  
Park ◽  
Song

The runoff from heavy rainfall reaches urban streams quickly, causing them to rise rapidly. It is therefore of great importance to provide sufficient lead time for evacuation planning and decision making. An efficient flood forecasting and warning method is crucial for ensuring adequate lead time. With this objective, this paper proposes an analysis method for a flood forecasting and warning system, and establishes the criteria for issuing urban-stream flash flood warnings based on the amount of rainfall to allow sufficient lead time. The proposed methodology is a nonstructural approach to flood prediction and risk reduction. It considers water level fluctuations during a rainfall event and estimates the upstream (alert point) and downstream (confluence) water levels for water level analysis based on the rainfall intensity and duration. We also investigate the rainfall/runoff and flow rate/water level relationships using the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and the HEC’s River Analysis System (HEC-RAS) models, respectively, and estimate the rainfall threshold for issuing flash flood warnings depending on the backwater state based on actual watershed conditions. We present a methodology for issuing flash flood warnings at a critical point by considering the effects of fluctuations in various backwater conditions in real time, which will provide practical support for decision making by disaster protection workers. The results are compared with real-time water level observations of the Dorim Stream. Finally, we verify the validity of the flash flood warning criteria by comparing the predicted values with the observed values and performing validity analysis.


2014 ◽  
Vol 15 (5) ◽  
pp. 1989-1998 ◽  
Author(s):  
Francesco Di Paola ◽  
Elisabetta Ricciardelli ◽  
Domenico Cimini ◽  
Filomena Romano ◽  
Mariassunta Viggiano ◽  
...  

Abstract In this paper, the analysis of an extreme convective event atypical for the winter season, which occurred on 21 February 2013 on the east coast of Sicily and caused a flash flood over Catania, is presented. In just 1 h, more than 50 mm of precipitation was recorded, but it was not forecast by numerical weather prediction (NWP) models and, consequently, no severe weather warnings were sent to the population. The case study proposed is first examined with respect to the synoptic situation and then analyzed by means of two algorithms based on satellite observations: the Cloud Mask Coupling of Statistical and Physical Methods (MACSP) and the Precipitation Evolving Technique (PET), developed at the National Research Council of Italy. Both of the algorithms show their ability in the near-real-time monitoring of convective cell formation and their rapid evolution. As quantitative precipitation forecasts by NWP could fail, especially for atypical convective events like in Catania, tools like MACSP and PET shall be adopted by civil protection centers to monitor the real-time evolution of deep convection events in aid to the severe weather warning service.


Author(s):  
G Stancalie ◽  
B Antonescu ◽  
C Oprea ◽  
A Irimescu ◽  
S Catana ◽  
...  

Author(s):  
M Velasco ◽  
A Cabello ◽  
I Escaler ◽  
J Barredo ◽  
A Barrera-Escoda

Author(s):  
C Girard ◽  
T Godfroy ◽  
M Erlich ◽  
E David ◽  
C Sorbet ◽  
...  

2017 ◽  
Vol 17 (9) ◽  
pp. 1631-1651 ◽  
Author(s):  
Saif Shabou ◽  
Isabelle Ruin ◽  
Céline Lutoff ◽  
Samuel Debionne ◽  
Sandrine Anquetin ◽  
...  

Abstract. Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial–temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.


Sign in / Sign up

Export Citation Format

Share Document