scholarly journals The Problem of Thermal Stress Fatigue in Austenitic Steels at Elevated Temperatures

Author(s):  
L. F. Coffin
Author(s):  
Y. Yamamoto ◽  
M. P. Brady ◽  
G. Muralidharan ◽  
B. A. Pint ◽  
P. J. Maziasz ◽  
...  

This paper overviews recent advances in developing novel alloy design concepts of creep-resistant, alumina-forming Fe-base alloys, including both ferritic and austenitic steels, for high-temperature structural applications in fossil-fired power generation systems. Protective, external alumina-scales offer improved oxidation resistance compared to chromia-scales in steam-containing environments at elevated temperatures. Alloy design utilizes computational thermodynamic tools with compositional guidelines based on experimental results accumulated in the last decade, along with design and control of the second-phase precipitates to maximize high-temperature strengths. The alloys developed to date, including ferritic (Fe-Cr-Al-Nb-W base) and austenitic (Fe-Cr-Ni-Al-Nb base) alloys, successfully incorporated the balanced properties of steam/water vapor-oxidation and/or ash-corrosion resistance and improved creep strength. Development of cast alumina-forming austenitic (AFA) stainless steel alloys is also in progress with successful improvement of higher temperature capability targeting up to ∼1100°C. Current alloy design approach and developmental efforts with guidance of computational tools were found to be beneficial for further development of the new heat resistant steel alloys for various extreme environments.


2007 ◽  
Vol 19 (1) ◽  
pp. 203 ◽  
Author(s):  
A. Aroyo ◽  
S. Yavin ◽  
Z. Roth ◽  
A. Arav

Heat stress is a major contributing factor to low fertility among dairy cattle, as reflected by the dramatic reduction in conception rate during the hot months. The effects of thermal stress on oocyte competence and embryonic development have been well documented. However, timing of embryonic cleavage, which may be considered a parameter for the identification of good-quality embryos, and its association with elevated temperatures have not been studied. Two experiments were performed to examine and characterize seasonal effects (i.e. thermal stress) on cleavage timing of bovine parthenogenetic embryos. Oocytes were aspirated from ovaries collected at the local abattoir in 2 seasons: cold (Dec–Apr) and hot (May–Nov). Matured oocytes were chemically activated (ionomycin followed by 6-DMAP) and cultured in vitro; cleavage timing to the 2- and 4-cell stages was observed and documented. The one-way ANOVA procedure was used for statistical analysis. In the first experiment (n = 5416 oocytes), cleavage was documented at specific time points during development post-activation. The peak in embryonic development to the 2-cell stage was earlier (22 to 27 vs. 27 to 40 h after activation) and the cleavage rate higher (39 vs. 21%; P < 0.0001) during the cold season relative to the hot season, respectively. Similarly, the peak in 4-cell-stage development was also observed earlier (46–52 vs. 52–70 h after activation) and corresponded with a higher proportion of developing embryos (33 vs. 21%; P < 0.0001) during the cold season as compared to the hot season, respectively. These results indicate that embryonic development is delayed and a lower proportion of embryos cleaved during the hot season. To better understand the delay in cleavage timing, a second experiment (n = 308 oocytes) was performed through two consecutive hot seasons. A time-lapse system (EmbryoGuard; IMT, Ltd., Ness-Ziona, Israel) was employed to collect accurate data on the first cleavage division, known to be indicative of embryo quality. The time-lapse system was pre-programmed to take photos at 1-h intervals such that culture dishes did not need to be removed from the incubator. Similar to the pattern noted for the hot season in the first experiment, a wide distribution of cleavage timing (18-40 h after activation) was observed. Further analysis revealed that embryos cleaved in 2 distinct waves: cleavage timing of the first wave (18 to 25 h after activation) was characterized by a time frame similar to that in the cold season, suggesting good-quality embryos; however, the second wave, from 27 to 40 h after activation, presented a delay in cleavage timing, suggesting that these late-cleaving embryos are of inferior quality. Taken together, the results of the 2 experiments lead to the assumption that oocytes harvested from lactating cows during the hot season are of reduced developmental potential, which may be explained, in part, by the pattern of 2 cleavage waves. Furthermore, cleavage timing appears to be a good indicator of embryo potential and may increase the chances of selecting better in vitro-derived embryos during the hot season for embryo transfer.


Author(s):  
Jussi Solin ◽  
Jouni Alhainen ◽  
Tommi Seppänen ◽  
H. Ertugrul Karabaki ◽  
Wolfgang Mayinger

Strain controlled LCF testing extended to 10 million cycles revealed an abrupt endurance limit enforced by secondary hardening. In elevated temperatures the ε-N curve is rotated and endurance limit is lowered, but not vanished. When very low strain rates are applied at 325°C in simulated PWR environment, fatigue life is reduced, but far less than predicted according to NUREG/CR-6909. It is possible, but not probable that the difference is due to different stainless grades studied. We assume that the test method plays a more important role. We have repeatedly demonstrated in different tests campaigns that interruptions of straining with holds aiming to simulate steady state normal operation between fatigue relevant cycles can notably extend the fatigue endurance. Further proof is again presented in this paper. The suspected explanation is prevention of strain localization within the material microstructure and also in geometric strain concentrations. This actually suggests, that hold effects should be even more pronounced in real components. Cyclic behavior of austenitic steels is very complex. Transferability of laboratory data to NPP operational conditions depends on test environment, temperature, strain rate and holds in many ways not considered in current fatigue assessment procedures. In addition to penalty factors, also bonus factors are needed to improve transferability. Furthermore, it seems that the load carrying capacity of fatigued stainless steel is not compromised before the crack growth phase. Tensile tests performed after fatigue tests interrupted shortly before end-of-life condition in 325°C (N ≈ 0.85 × N25) showed strength and ductility almost identical to virgin material. This paper provides new experimental results and discusses previous observations aiming to sum up a state of the art in fatigue performance of German NPP primary loop materials.


CORROSION ◽  
1965 ◽  
Vol 21 (10) ◽  
pp. 332-336 ◽  
Author(s):  
C. P. DOSHI ◽  
W. W. AUSTIN

Abstract The grain size of the austenitic stainless steel affects the rate of intergranular attack at high temperatures. While the effect of grain size has been studied for 18-8 chromium-nickel austenitic steels, little work has been done on chromium-nickel-manganese austenitic steels. It is the purpose of this investigation to correlate intergranuiar attack with grain size in these steels. A commercially available alloy (AISI Type 201) was selected for study. Effect of four different grain sizes (ASTM Grain Size Numbers 1, 2, 3 and 5) at four different sensitization times and four temperatures was studied. Results obtained in terms of weight loss in the boiling nitric acid test and through photomicrography were used to correlate intergranuiar attack with grain size. Best resistance to corrosion was obtained at a sensitization temperature of 800 F (426 C) for all grain sizes. At elevated temperatures [1000 and 1200 F (537 and 649 C)] corrosion rate increased with increasing sensitization time. Upon comparison of sensitization behavior at 1400 F (760 C) for all grain sizes it was found that exposure for 48 hours produced less severe corrosive attack than did the 16-hr exposure. This was explained in terms of increase in size of carbide particles.


1997 ◽  
Vol 9 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Kevin Hall

A series of benches on nunataks of Alexander Island (Antarctica) are described. An increase in bench size with distance away from the retreating glacier suggests an age spectrum. The benches have thermal contraction cracks (in bedrock) on shallower, upper sections of the risers as well as salt encrusted runnels on the steeper lower section of the tread. The benches also show a distinct orientational preference (orientated to the north through to west) and, from first principles, these seem to be the aspects with optimal freeze-thaw cycles and temperatures conducive to thermal stress fatigue. The extensive dilatation associated with the retreating glaciers is thought to play a significant role in the origin and development of the benches as the combination of extensive jointing and optimal process conditions are thought to constrain where benches begin. The jointing, aided by the thermal contraction cracking, then facilitates extension and continued weathering of the treads. It would appear that these benches are examples of so called “cryoplanation terraces” that have been reported as fossil forms in Europe and North America. The study of such active forms in the Antarctic may provide good analogues for fossil features found in the Northern Hemisphere.


2017 ◽  
Vol 375 ◽  
pp. 134-138 ◽  
Author(s):  
Alexey Dikov ◽  
Sergey Kislitsin ◽  
Ivan Chernov

12C18Cr10NiТi and 0.08C16Cr11Ni3Мo austenitic steels serve as structural materials for fuel assembly covers in the BN-350 fast reactor, as well as for the covers of transport packagings for transportation and storage of spent nuclear fuel (SNF). To predict failure of these elements, it is of paramount importance to know their mechanical properties at elevated temperatures after in-pile irradiation. We performed tensile and creep tests at room temperature (RT), 350 °C and 450 °C of irradiated samples cut from the higher half of fuel duct pipes of the BN-350 reactor. A non-monotonic temperature dependence of tensile strength, yield stress, and relative elongation was shown. Microstructural investigation revealed the origin of this dependence lies in the different distribution of carbides and is also associated with the formation of α'-phase.


2017 ◽  
Author(s):  
S.W. Davies ◽  
J.B. Ries ◽  
A Marchetti ◽  
Rafaela Granzotti ◽  
K.D. Castillo

ABSTRACTCoral bleaching episodes are increasing in frequency, demanding examination of the physiological and molecular responses of corals and their Symbiodinium to climate change. Here we quantify bleaching and Symbiodinium photosynthetic performance of Siderastrea siderea from two reef zones after long-term exposure to thermal and CO2-acidification stress. Molecular response of in hospite Symbiodinium to these stressors was interrogated with RNAseq. Elevated temperatures reduced photosynthetic efficiency, which was highly correlated with bleaching status. However, photosynthetic efficiencies of forereef symbionts were more negatively affected by thermal stress than nearshore symbionts, indicating greater thermal tolerance in nearshore corals. At control temperatures, CO2-acidification had little effect on symbiont physiology, although forereef symbionts exhibited greater photosynthetic efficiencies than nearshore symbionts. Transcriptome profiling revealed that S. siderea were dominated by clade C Symbiodinium, except under thermal stress, which caused shifts to thermotolerant clade D. Comparative transcriptomics of conserved genes across symbiotic partners revealed few differentially expressed Symbiodinium genes when compared to corals. Instead of responding to stress, clade C transcriptomes varied by reef zone, with forereef Symbiodinium exhibiting enrichment of genes associated with photosynthesis. Our findings suggest that functional variation in photosynthetic architecture exists between forereef and nearshore Symbiodinium populations.


Sign in / Sign up

Export Citation Format

Share Document