Knowledge Acquisition in Socio-Cyber-Physical Systems through Information Exchange between Resources

2017 ◽  
Vol 6 (91) ◽  
pp. 113-122 ◽  
Author(s):  
A. V. Smirnov ◽  
◽  
T. V. Levashova ◽  
2015 ◽  
Vol 22 (5) ◽  
pp. 516-535 ◽  
Author(s):  
Abiola Akanmu ◽  
Chimay J. Anumba

Purpose – In spite of the benefits of virtual models in the building and construction industry, the full potential of these models, especially in the construction and operation phases, remains largely unrealized. With the increasing developments in information and communication technology, a number of attempts have been made to extend the use of these models, through the development of integration approaches and technologies. However, the issue of integrating the virtual model and the physical construction such as to enable bi-directional coordination, has not been adequately addressed. Thus, the purpose of this paper is to investigate the application of a cyber-physical systems (CPS) approach in enhancing bi-directional coordination between virtual models and the physical construction. Design/methodology/approach – This research employs scenario development rapid prototyping to illustrate CPS integration in the construction industry, with a particular focus on facilitating bi-directional coordination. The proof-of-concept prototype systems developed were validated using a focus group consisting of industry practitioners. Findings – Bi-directional coordination between virtual models and the physical construction has the potential to improve real-time progress monitoring and control of the construction process, tracking of changes and model updates, information exchange between the design office and the job site, real-time documentation of the as-built status of high-value components and improved sustainability practices. Originality/value – This paper adds value to the construction industry by demonstrating the application of the CPS approach in enhancing bi-directional coordination between virtual models and the physical construction through the development of system architectures, scenarios and prototype systems.


Author(s):  
Yan Wang

Cyber-physical systems (CPS) extensively share information with each other, work collaboratively over Internet of Things, and seamlessly integrated with human society. Designing CPS requires the new consideration of design for connectivity where security, privacy, and trust are of the main concerns. Particularly trust can affect system behavior in a networked environment. In this paper, trustworthiness is quantitatively measured by the perceptions of ability, benevolence, and integrity. Ability indicates the capabilities of sensing, reasoning, and influence in a society. Benevolence measures the genuineness of intention and reciprocity in information exchange. Integrity captures the system predictability and dependability. With these criteria, trust-based CPS network design and optimization are demonstrated.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042036
Author(s):  
A V Shukalov ◽  
D A Zakoldaev ◽  
I O Zharinov ◽  
O O Zharinov

Abstract The cyber-physical production base technologies are control, computing and connection being applied altogether in the industrial object technological processes automatic regulation systems. They use control technologies in multi-loops and multi-channel regulation systems forming a hierarchy structure. Automatics functional elements unite in the intermediary regulation scheme stabilizing hierarchy control objects, which states are detected with sensors. Computing technologies are used in the cyber-physical production imitation virtual environment and provide processes simulation based on control models and cyber-physical systems digital twins structured in hierarchy levels. The regulation accuracy increase is provided with physical and model processes results comparison detecting non-definition factors acting production processes accuracy. The communication technology is used for the cyber-physical systems net information exchange given with the Internet of Things parameters. The cyber-physical systems continuous work in the non-ideal communication net regulation interval is provided with preventive control signals compensating operation and information delay of automatic conveyor lines. There is a scheme given of multi-loop and multi-channel automatic cyber-physical production using control objects hierarchy based on cyber-physical systems hierarchy and item manufacturing technological tasks.


2019 ◽  
Vol 97 ◽  
pp. 01012 ◽  
Author(s):  
Pavel Chelyshkov

At present, an increasing number of researchers and specialists in the construction industry come to the opinion that it is advisable to use a number of technologies (BIM, Smart City, Big Data, IOT and others) in the practice of construction (in the broad sense of this concept), which are united by the concept of the Fourth Industrial Revolution. The result of the implementation of these technologies in the construction should be the transition to the widespread use of cyber-physical systems. The problem of using information technologies in construction today is not due to the lack of this process as such, but to the lack of consistency and consistency in it. Fragmentary nature of the application, inconsistency of the applied technologies at different levels of management and at different stages of the life cycle of construction projects sharply reduce the potential positive effect of informatization and building automation. At the same time, the concept of cyber-physical systems, that is, the integration at the system level of physical processes and controls has proven effective in industrial production. The approaches to ensuring the processes of designing cyber-physical building systems through the development and application of General mathematical models for the processes of data exchange and management are considered. The presented models of data exchange and management of cyber-physical building systems describe the processes implemented at each stage of the life cycle of cyber-physical building systems. Functional blocks of the considered models allow to describe the processes of data collection, storage and processing on the current and past stages of the life cycle of cyber-physical construction systems. The presented models are the elements of mathematical support of the processes of designing cyber-physical building systems, which determine the processes of information exchange and management between the structures of cyber-physical building systems of different levels of hierarchy in the full life cycle.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Sign in / Sign up

Export Citation Format

Share Document