Lattice changes in heat-treated plagioclases The existence of monalbite at room temperature

1960 ◽  
Vol 113 (1-6) ◽  
pp. 297-329 ◽  
Author(s):  
William L. Brown
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 330
Author(s):  
Pan Ma ◽  
Pengcheng Ji ◽  
Yandong Jia ◽  
Xuerong Shi ◽  
Zhishui Yu ◽  
...  

The Al-20Si-5Fe-3Cu-1Mg alloy was fabricated using selective laser melting (SLM). The microstructure and properties of the as-prepared SLM, post-treated SLM, and SLM with substrate plate heating are studied. The as-prepared SLM sample shows a non-uniform microstructure with four different phases: fcc-αAl, eutectic Al-Si, Al2MgSi, and δ-Al4FeSi2. With thermal treatment, the phases become coarser and the δ-Al4FeSi2 phase transforms partially to β-Al5FeSi. The sample produced with SLM substrate plate heating shows a relatively uniform microstructure without a distinct difference between hatch overlaps and track cores. Room temperature compression test results show that an as-prepared SLM sample reaches a maximum strength (862 MPa) compared to the heat-treated (524 MPa) and substrate plate heated samples (474 MPa) due to the presence of fine microstructure and the internal stresses. The reduction in strength of the sample produced with substrate plate heating is due to the coarsening of the microstructure, but the plastic deformation shows an improvement (20%). The present observations suggest that substrate plate heating can be effectively employed not only to minimize the internal stresses (by impacting the cooling rate of the process) but can also be used to modulate the mechanical properties in a controlled fashion.


2009 ◽  
Vol 37 (1) ◽  
pp. 31-41 ◽  
Author(s):  
K. Delbé ◽  
P. Thomas ◽  
D. Himmel ◽  
J. L. Mansot ◽  
M. Dubois ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomasz K. Pietrzak ◽  
Agata Jarocka ◽  
Cezariusz Jastrzębski ◽  
Tomasz Płociński ◽  
Marek Wasiucionek ◽  
...  

AbstractBismuth sesquioxide ($$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 ) draws much attention due to wide variety of phases in which it exists depending on the temperature. Among them, $$\delta$$ δ phase is specially interesting because of its high oxide ion conductivity and prospects of applications as an electrolyte in fuel cells. Unfortunately, it is stable only in a narrow temperature range ca. 730–830 $$^{\circ }$$ ∘ C. Our group has developed a facile and reproducible two-stage method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 crystalline phases confined in nanocrystallites embedded in amorphous matrix. In the first stage, glassy materials were obtained by a routine melt-quenching method: pure $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 powders were melted in porcelain crucibles and fast-cooled down to room temperature. In the second step, the materials were appropriately heat-treated to induce formation of crystallites of $$\beta$$ β , $$\delta$$ δ or $$\gamma$$ γ $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in a glassy matrix, depending on the process conditions. It was found out that the vitrification of the initial $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 and the subsequent nanocrystallization were unexpectedly possible due to the presence of some Al, and Si impurities from the crucibles. Systematic DTA, XRD, optical, Raman and SEM/EDS studies were carried out to investigate the influence of the syntheses processes and allowed us to determine conditions under which the particular phases appear and remain stable down to room temperature.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


2006 ◽  
Vol 118 ◽  
pp. 53-58
Author(s):  
Elisabeth Meijer ◽  
Nicholas Armstrong ◽  
Wing Yiu Yeung

This study is to investigate the crystallite development in nanostructured aluminium using x-ray line broadening analysis. Nanostructured aluminium was produced by equal channel angular extrusion at room temperature to a total deformation strain of ~17. Samples of the extruded metal were then heat treated at temperatures up to 300oC. High order diffraction peaks were obtained using Mo radiation and the integral breadth was determined. It was found that as the annealing temperature increased, the integral breadth of the peak reflections decreased. By establishing the modified Williamson-Hall plots (integral breadth vs contract factor) after instrumental correction, it was determined that the crystallite size of the metal was maintained ~80 nm at 100oC. As the annealing temperature increased to 200oC, the crystallite size increased to ~118 nm. With increasing annealing temperature, the hardness of the metal decreased from ~60 HV to ~45 HV.


1988 ◽  
Vol 128 ◽  
Author(s):  
R. G. Vardiman

ABSTRACTBulk SiC and Si3N4 have been implanted with Ti at room temperature, and subsequently vacuum heat treated between 800° and 1100°C. All specimens were backthinned by ion milling and examined in TEM. SiC becomes amorphous on implantion, and develops a fine dispersion of TiC precipitates up to 800°C. At 900°C recrystallization has begun, possibly nucleated by the TiC particles. Si3N4 shows fine TiN particles in an amorphous matrix even as implanted. This structure is retained up to 900°C. At 1000°C, regrowth of the Si3N4 apparently from the substrate begins, and the TiN particles also grow as large as 200nm.


1988 ◽  
Vol 124 ◽  
Author(s):  
Ralph W. Bruce ◽  
R. A. Quar

ABSTRACTMetal alloys, when exposed to a salt/organic environment at elevated temperatures, corrode resulting in a decrease in the surface conductivity. This decrease can be monitored and assessed via the measurement of the incident and reflected microwave signals impinging upon the corroded surface. Several metallic alloys, stainless steels and inconels, were treated with a salt/organic mixture (proprietary) and heat treated at 1100 F. Periodically, the metals were removed from the furnace, allowed to cool to room temperature, and measured electrically. The samples were re-coated with the salt/organic mixture and re-heat treated. The electrical measurements showed a generally increased power absorption as corrosion thickness increased.


2018 ◽  
Vol 941 ◽  
pp. 1686-1691 ◽  
Author(s):  
Pedro Poza ◽  
Paloma Sirvent ◽  
Álvaro Rico ◽  
Claudio J. Múnez ◽  
Miguel Ángel Garrido

Ti6Al4V coatings were cold sprayed onto the same bulk alloy using standard conditions and a set of parameters developed to improve the coating’s performance. In addition, the enhanced coating was heat treated to improve coating adhesion and reduce porosity. Wear tests were performed, onto the coatings and the substrate, in oscillating conditions, which simulate wear induced by the contact with bearing parts during vibration. Wear behaviour at room temperature is dominated by a mixed mechanism, which involves plastic deformation and transference from the counterbody forming mechanically mixed layers. As temperature is increased, the formation of mechanically mixed layers dominates wear. The wear resistance of the enhanced coatings is similar to the bulk alloy, or even better in some conditions. Consequently, cold sprayed improved coatings could be used for repairing titanium components from the contact wear point of view.


2012 ◽  
Vol 326-328 ◽  
pp. 520-524 ◽  
Author(s):  
L.A.N.S. Briguente ◽  
Antônio Augusto Couto ◽  
Nara Miranda Guimarães ◽  
Danieli A.P. Reis ◽  
Carlos de Moura Neto ◽  
...  

Ti-6Al-4V is the most used of titanium alloy and presents some important properties as metallurgical stability, high specific strength, corrosion and creep resistance [. The aim of this study is to evaluate the creep behavior of Ti-6Al-4V alloy with equiaxed and bimodal microstructures and determine the creep parameters of Ti-6Al-4V in these conditions. It was used a Ti-6Al-4V alloy forged and annealed at 190°C for 6 hours and cooled in air. The material in this condition shows an equiaxed microstructure. For bimodal microstructure, the material was heat-treated at 950°C for 60 minutes and cooled in water until room temperature. After this the material was heat-treated at 600°C for 24 hours and cooled in air until room temperature. Creep tests were performed at 600°C in stress conditions of 125, 250 and 319 MPa at constant load. The alloy with Bimodal microstructure shows higher creep resistance with a longer life time in creep.


Author(s):  
Hakan Aydın ◽  
Ali Bayram ◽  
İsmail Durgun

The present work describes the results obtained from microstructural and mechanical evaluation of post-weld heat treated friction stir welds of 2024 aluminum alloys in the W temper state. Post-weld heat treatments have been carried out at 510 °C for 2.5 h followed by ageing at room temperature for 6 months, at 100 °C and 190 °C for 10 h, and by cooling in static air (O-temper). The solution treatment caused abnormal coarsening of the grains in the stir zone, which resulted in a drop in microhardness. The strength of the as-welded joint was significantly incrased by post weld heat treatments. The maximum hardness and strength values were obtained in T6 (190 °C, 10 h) treated joint. However, the T6 (190 °C, 10 h) treated joint had the lowest ductility. On the other hand, the tensile properties of the post-weld heat treated joints were far lower than those of the unwelded base materials in the same temper states. In addition, the post-weld heat treatments did not significantly change the fracture locations of the friction stir welds.


Sign in / Sign up

Export Citation Format

Share Document