scholarly journals Key challenges for tropospheric chemistry in the Southern Hemisphere

Elem Sci Anth ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Clare Paton-Walsh ◽  
Kathryn M. Emmerson ◽  
Rebecca M. Garland ◽  
Melita Keywood ◽  
Judith J. Hoelzemann ◽  
...  

This commentary paper from the recently formed International Global Atmospheric Chemistry (IGAC) Southern Hemisphere Working Group outlines key issues in atmospheric composition research that particularly impact the Southern Hemisphere. In this article, we present a broad overview of many of the challenges for understanding atmospheric chemistry in the Southern Hemisphere, before focusing in on the most significant factors that differentiate it from the Northern Hemisphere. We present sections on the importance of biogenic emissions and fires in the Southern Hemisphere, showing that these emissions often dominate over anthropogenic emissions in many regions. We then describe how these and other factors influence air quality in different parts of the Southern Hemisphere. Finally, we describe the key role of the Southern Ocean in influencing atmospheric chemistry and conclude with a description of the aims and scope of the newly formed IGAC Southern Hemisphere Working Group.

2017 ◽  
Vol 200 ◽  
pp. 11-58 ◽  
Author(s):  
Barbara J. Finlayson-Pitts

The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.


2015 ◽  
Vol 15 (13) ◽  
pp. 7217-7245 ◽  
Author(s):  
G. Zeng ◽  
J. E. Williams ◽  
J. A. Fisher ◽  
L. K. Emmons ◽  
N. B. Jones ◽  
...  

Abstract. We investigate the impact of biogenic emissions on carbon monoxide (CO) and formaldehyde (HCHO) in the Southern Hemisphere (SH), with simulations using two different biogenic emission inventories for isoprene and monoterpenes. Results from four atmospheric chemistry models are compared to continuous long-term ground-based CO and HCHO column measurements at the SH Network for the Detection of Atmospheric Composition Change (NDACC) sites, the satellite measurement of tropospheric CO columns from the Measurement of Pollution in the Troposphere (MOPITT), and in situ surface CO measurements from across the SH, representing a subset of the National Oceanic and Atmospheric Administration's Global Monitoring Division (NOAA GMD) network. Simulated mean model CO using the Model of Emissions of Gases and Aerosols from Nature (v2.1) computed in the frame work of the Land Community Model (CLM-MEGANv2.1) inventory is in better agreement with both column and surface observations than simulations adopting the emission inventory generated from the LPJ-GUESS dynamical vegetation model framework, which markedly underestimate measured column and surface CO at most sites. Differences in biogenic emissions cause large differences in CO in the source regions which propagate to the remote SH. Significant inter-model differences exist in modelled column and surface CO, and secondary production of CO dominates these inter-model differences, due mainly to differences in the models' oxidation schemes for volatile organic compounds, predominantly isoprene oxidation. While biogenic emissions are a significant factor in modelling SH CO, inter-model differences pose an additional challenge to constrain these emissions. Corresponding comparisons of HCHO columns at two SH mid-latitude sites reveal that all models significantly underestimate the observed values by approximately a factor of 2. There is a much smaller impact on HCHO of the significantly different biogenic emissions in remote regions, compared to the source regions. Decreased biogenic emissions cause decreased CO export to remote regions, which leads to increased OH; this in turn results in increased HCHO production through methane oxidation. In agreement with earlier studies, we corroborate that significant HCHO sources are likely missing in the models in the remote SH.


2019 ◽  
Vol 59 ◽  
pp. 10.1-10.52 ◽  
Author(s):  
T. J. Wallington ◽  
J. H. Seinfeld ◽  
J. R. Barker

Abstract Remarkable progress has occurred over the last 100 years in our understanding of atmospheric chemical composition, stratospheric and tropospheric chemistry, urban air pollution, acid rain, and the formation of airborne particles from gas-phase chemistry. Much of this progress was associated with the developing understanding of the formation and role of ozone and of the oxides of nitrogen, NO and NO2, in the stratosphere and troposphere. The chemistry of the stratosphere, emerging from the pioneering work of Chapman in 1931, was followed by the discovery of catalytic ozone cycles, ozone destruction by chlorofluorocarbons, and the polar ozone holes, work honored by the 1995 Nobel Prize in Chemistry awarded to Crutzen, Rowland, and Molina. Foundations for the modern understanding of tropospheric chemistry were laid in the 1950s and 1960s, stimulated by the eye-stinging smog in Los Angeles. The importance of the hydroxyl (OH) radical and its relationship to the oxides of nitrogen (NO and NO2) emerged. The chemical processes leading to acid rain were elucidated. The atmosphere contains an immense number of gas-phase organic compounds, a result of emissions from plants and animals, natural and anthropogenic combustion processes, emissions from oceans, and from the atmospheric oxidation of organics emitted into the atmosphere. Organic atmospheric particulate matter arises largely as gas-phase organic compounds undergo oxidation to yield low-volatility products that condense into the particle phase. A hundred years ago, quantitative theories of chemical reaction rates were nonexistent. Today, comprehensive computer codes are available for performing detailed calculations of chemical reaction rates and mechanisms for atmospheric reactions. Understanding the future role of atmospheric chemistry in climate change and, in turn, the impact of climate change on atmospheric chemistry, will be critical to developing effective policies to protect the planet.


2016 ◽  
Author(s):  
Emanuele Emili ◽  
Selime Gürol ◽  
Daniel Cariolle

Abstract. Model errors play a significant role in air-quality forecasts. Accounting for them in the data assimilation (DA) procedures is decisive to obtain improved forecasts. We address this issue using a reduced-order chemical transport model based on quasi-geostrophic dynamics and a detailed tropospheric chemistry mechanism, which we name QG-Chem. This model has been coupled to a generic software library for data assimilation and used to assess the potential of the 4DEnVar algorithm for air-quality analyses and forecasts. Among the assets of 4DEnVar, we reckon the possibility to deal with multivariate aspects of atmospheric chemistry and to account for model errors of generic type. A simple diagnostic procedure for detecting model errors is proposed, based on the 4DEnVar analysis and one additional model forecast. A large number of idealized data assimilation experiments are shown for several chemical species of relevance for air-quality forecasts (O3, NOx, CO and CO2), with very different atmospheric life-times and chemical couplings. Experiments are done both under a perfect model hypothesis and including model error through perturbation of surface chemical emissions, for two meteorological and chemical regimes. Some key elements of the 4DEnVar algorithm such as the ensemble size and localization are also discussed. A comparison with results of 3D-Var, widely used in operational centers, shows that, for some species, analyses and next day forecast errors can be halved when model error is taken in account. This result was obtained using a small ensemble size, which remain affordable for most operational centers. We conclude that 4DEnVar has a promising potential for operational air-quality models. We finally highlight areas that deserve further research for applying 4DEnVar to large scale chemistry models, i.e. localization techniques, propagation of analysis covariance between DA cycles and treatment for chemical non-linearities. QG-Chem provides a useful tool in this regard.


2007 ◽  
Vol 7 (3) ◽  
pp. 7137-7169
Author(s):  
G. E. Bodeker ◽  
H. Garny ◽  
D. Smale ◽  
M. Dameris ◽  
R. Deckert

Abstract. One of the most significant events in the evolution of the ozone layer over southern mid-latitudes since the late 1970s was the large decrease observed in 1985. This event remains unexplained and most state-of-the-art atmospheric chemistry-transport models are unable to reproduce it. In this study, the 1985 southern hemisphere mid-latitude total column ozone anomaly is analyzed in detail based on observed daily total column ozone fields, stratospheric dynamical fields, and calculated diagnostics of stratospheric mixing. The 1985 anomaly appears to result from a combination of (i) an anomaly in the meridional circulation resulting from the westerly phase of the equatorial quasi-biennial oscillation (QBO), (ii) weaker transport of ozone from its tropical mid-stratosphere source across the sub-tropical barrier to mid-latitudes related to the particular phasing of the QBO with respect to the annual cycle, and (iii) a solar cycle induced local reduction in ozone. The results based on observations are compared and contrasted with analyses of ozone and dynamical fields from the ECHAM4.L39(DLR)/CHEM coupled chemistry-climate model (hereafter referred to as E39C). Equatorial winds in the E39C model are nudged towards observed winds between 10° S and 10° N and the ability of this model to produce an ozone anomaly in 1985, similar to that observed, confirms the role of the QBO in the anomaly.


2015 ◽  
Vol 15 (15) ◽  
pp. 21025-21061
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans

Abstract. Surface ozone observations with modern instrumentation have been made around the world for almost 50 years. Some of these observations have been made as one-off activities with short term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. Sofen et al. (2015) brought together 8 of these networks to provide a single dataset of surface ozone observations. We investigate how representative this combined dataset is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents such as Africa, South America and Asia (12–17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under observed. The current network is unlikely to see the impact of ENSO but may be capable of detecting other planetary scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where they models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the WMO GAW ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long term benefit to our understanding of the composition of the atmosphere and in the development of policy.


2006 ◽  
Vol 6 (4) ◽  
pp. 6957-7050 ◽  
Author(s):  
P. Jöckel ◽  
H. Tost ◽  
A. Pozzer ◽  
C. Brühl ◽  
J. Buchholz ◽  
...  

Abstract. The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.


2006 ◽  
Vol 6 (12) ◽  
pp. 5067-5104 ◽  
Author(s):  
P. Jöckel ◽  
H. Tost ◽  
A. Pozzer ◽  
C. Brühl ◽  
J. Buchholz ◽  
...  

Abstract. The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.


2021 ◽  
Author(s):  
Tamara Emmerichs ◽  
Bruno Franco ◽  
Catherine Wespes ◽  
Simon Rosanka ◽  
Domenico Taraborrelli

<p>Near-surface ozone is a harmful air pollutant, which is not only controlled by chemical production and loss processes.  The major removal process of near-surface ozone is dry deposition accounting for 20 % of the total tropospheric ozone loss. Due to its significance, parameterizations used in atmospheric chemistry models represent a major source of uncertainty for tropospheric ozone simulations. This uncertainty might be one of the reasons why global models tend to overestimate ozone, when compared to observations. The model used in this study, the global atmospheric model ECHAM5/MESSy (EMAC), is no exception. Like most global models, EMAC employs a “resistances in series” scheme, which is hardly sensitive to local meteorological conditions (e.g. humidity) and lacks non-stomatal deposition. In this study, these missing features have been implemented in EMAC affecting not only the deposition of ozone but also the removal of ozone precursors, resulting in lower chemical production of ozone.</p><p>Furthermore, near-surface ozone may be significantly impacted by water vapour forming complexes with peroxy radicals. The role of water in the reaction of HO<sub>2</sub> radical with itself and nitrogen oxides is known from the literature. However, in current models only the former is considered by assuming a linear dependence on water concentrations. Recent experimental evidence for the significant role of water on the kinetics of one of the most important reaction for ozone chemistry, namely NO<sub>2</sub> + OH, has been published. Here, the available kinetic data for the HO<sub>x</sub> + NO<sub>x</sub> reactions have been critically re-assessed and included in EMAC to test its global significance. Additionally, we considered the representation of isoprene and nitrous acid (HONO) as important oxidants for lower tropospheric chemistry. Namely, for isoprene emissions we added a drought stress factor which enables a higher sensitivity to meteorology leading to reduced emissions. Also, we firstly implemented soil emissions of HONO which is known as a missing source in models. The implications of these modifications on the global tropospheric composition are analysed, focusing on near-surface ozone and related precursors. The improved representation of ozone in EMAC is demonstrated using measurements from the Infrared Atmospheric Sounding Interferometers (IASI), the Tropospheric Ozone Assessment Report (TOAR) database and from the Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST). The overall changes might help to reduce the uncertainty and overestimation of models predicting near-surface ozone.</p>


2016 ◽  
Vol 9 (11) ◽  
pp. 3933-3959 ◽  
Author(s):  
Emanuele Emili ◽  
Selime Gürol ◽  
Daniel Cariolle

Abstract. Model errors play a significant role in air quality forecasts. Accounting for them in the data assimilation (DA) procedures is decisive to obtain improved forecasts. We address this issue using a reduced-order coupled chemistry–meteorology model based on quasi-geostrophic dynamics and a detailed tropospheric chemistry mechanism, which we name QG-Chem. This model has been coupled to the software library for the data assimilation Object Oriented Prediction System (OOPS) and used to assess the potential of the 4DEnVar algorithm for air quality analyses and forecasts. The assets of 4DEnVar include the possibility to deal with multivariate aspects of atmospheric chemistry and to account for model errors of a generic type. A simple diagnostic procedure for detecting model errors is proposed, based on the 4DEnVar analysis and one additional model forecast. A large number of idealized data assimilation experiments are shown for several chemical species of relevance for air quality forecasts (O3, NOx, CO and CO2) with very different atmospheric lifetimes and chemical couplings. Experiments are done both under a perfect model hypothesis and including model error through perturbation of surface chemical emissions. Some key elements of the 4DEnVar algorithm such as the ensemble size and localization are also discussed. A comparison with results of 3D-Var, widely used in operational centers, shows that, for some species, analysis and next-day forecast errors can be halved when model error is taken into account. This result was obtained using a small ensemble size, which remains affordable for most operational centers. We conclude that 4DEnVar has a promising potential for operational air quality models. We finally highlight areas that deserve further research for applying 4DEnVar to large-scale chemistry models, i.e., localization techniques, propagation of analysis covariance between DA cycles and treatment for chemical nonlinearities. QG-Chem can provide a useful tool in this regard.


Sign in / Sign up

Export Citation Format

Share Document