scholarly journals Semi-Autonomous Telepresence Robot Architecture for Adaptively Switching between Remote and Autonomous Operation

2021 ◽  
Vol 36 (2) ◽  
pp. D-K47_1-12
Author(s):  
Kohei Okuoka ◽  
Masahiko Osawa ◽  
Michita Imai
2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 472
Author(s):  
Florian Lukas Vetter ◽  
Steffen Zobel-Roos ◽  
Jochen Strube

This study proposes a reliable inline PAT concept for the simultaneous monitoring of different product components after chromatography. The feed for purification consisted of four main components, IgG monomer, dimer, and two lower molecular weight components of 4.4 kDa and 1 kDa molecular weight. The proposed measurement setup consists of a UV–VIS diode-array detector and a fluorescence detector. Applying this system, a R2 of 0.93 for the target component, a R2 of 0.67 for the dimer, a R2 of 0.91 for the first side component and a R2 of 0.93 for the second side component is achieved. Root mean square error for IgG monomer was 0.027 g/L, for dimer 0.0047 g/L, for side component 1 0.016 g/L and for the side component 2 0.014 g/L. The proposed measurement concept tracked component concentration reliably down to 0.05 g/L. Zero-point fluctuations were kept within a standard deviation of 0.018 g/L for samples with no IgG concentration but with side components present, allowing a reliable detection of the target component. The main reason inline concentration measurements have not been established yet, is the false-positive measurement of target components when side components are present. This problem was eliminated using the combination of fluorescence and UV–VIS data for the test system. The use of this measurement system is simulated for the test system, allowing an automatic fraction cut at 0.05 g/L. In this simulation a consistent yield of >99% was achieved. Process disturbances for processed feed volume, feed purity and feed IgG concentration can be compensated with this setup. Compared to a timed process control, yield can be increased by up to 12.5%, if unexpected process disturbances occur.


2021 ◽  
pp. 004723952110347
Author(s):  
Penny Thompson ◽  
Sarinporn Chaivisit

This study used the concept of shared affordance space to explore students’ perceptions of the use of a telepresence robot in a face-to-face classroom. Results from this qualitative pilot study suggest the telepresence robot has the potential to provide enough autonomy and agency for both the remote user and the in-class students to perceive a shared affordance space. Robot users and classmates use human pronouns to describe the robot user and discuss a process of adjusting to its presence. The physical configuration of the classroom can either facilitate or hinder this process. The research provides greater understanding of the experiences of students in a face-to-face classroom that includes remote students attending class using a telepresence robot. It can help educators design and implement these experiences in a way that creates a beneficial classroom experience for both in-class and remote learners.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hui Hu ◽  
Fu Zhou ◽  
Baojuan Wang ◽  
Xin Chang ◽  
Tianyue Dai ◽  
...  

Three dimensional (3D) DNA walkers possesses the potential as ideal candidates for signal transduction and amplification in bioassays. However, intracellularly autonomous operation of 3D DNA walkers is still limitedly implemented...


2021 ◽  
Vol 11 (4) ◽  
pp. 1594 ◽  
Author(s):  
Andrea Botta ◽  
Paride Cavallone ◽  
Luigi Tagliavini ◽  
Luca Carbonari ◽  
Carmen Visconte ◽  
...  

In this paper, the effects of wheel slip compensation in trajectory planning for mobile tractor-trailer robot applications are investigated. Firstly, a kinematic model of the proposed robot architecture is marked out, then an experimental campaign is done to identify if it is possible to kinematically compensate trajectories that otherwise would be subject to large lateral slip. Due to the close connection to the experimental data, the results shown are valid only for Epi.q, the prototype that is the main object of this manuscript. Nonetheless, the base concept can be usefully applied to any mobile robot subject to large lateral slip.


2014 ◽  
Vol 7 (2) ◽  
pp. 103-119 ◽  
Author(s):  
Katherine M. Tsui ◽  
Adam Norton ◽  
Daniel J. Brooks ◽  
Eric McCann ◽  
Mikhail S. Medvedev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document