USING SYMMETRY GROUP CORRELATION TABLES TO EXPLAIN WHY ERHAM (AND OTHER PROGRAMS) CANNOT BE USED TO ANALYZE TORSIONAL SPLITTINGS OF SOME MOLECULES

Author(s):  
Peter Groner
1990 ◽  
Vol 55 (4) ◽  
pp. 951-963 ◽  
Author(s):  
Josef Vrba ◽  
Ywetta Purová

A linguistic identification of a system controlled by a fuzzy-logic controller is presented. The information about the behaviour of the system, concentrated in time-series, is analyzed from the point of its description by linguistic variable and fuzzy subset as its quantifier. The partial input/output relation and its strength is expressed by a sort of correlation tables and coefficients. The principles of automatic generation of model statements are presented as well.


2020 ◽  
Vol 7 (1) ◽  
pp. 241-256
Author(s):  
Matthew Gibson ◽  
Jeffrey Streets

AbstractWe describe natural deformation classes of generalized Kähler structures using the Courant symmetry group, which determine natural extensions of the notions of Kähler class and Kähler cone to generalized Kähler geometry. We show that the generalized Kähler-Ricci flow preserves this generalized Kähler cone, and the underlying real Poisson tensor.


2017 ◽  
Vol 351 ◽  
pp. 230-253 ◽  
Author(s):  
Zhipeng Li ◽  
Hongchun Wu ◽  
Yunzhao Li ◽  
Liangzhi Cao

2021 ◽  
pp. 108128652110216
Author(s):  
Victor A. Eremeyev

Using an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients. Both models found applications to modeling of materials with complex inner structure such as beam-lattice metamaterials and fluids at small scales. The local material symmetry group is formed through such transformations of a reference placement which cannot be experimentally detected within the considered material model. We show that considering maximal symmetry group, i.e. material with strain energy that is independent of the choice of a reference placement, one comes to the constitutive equations of gradient fluids introduced independently on general strain gradient continua.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Young Kim ◽  
Michael D. Han ◽  
Kug Jin Jeon ◽  
Jong-Ki Huh ◽  
Kwang-Ho Park

Abstract Background The purpose of this study was to investigate the differences in configuration and dimensions of the anterior loop of the inferior alveolar nerve (ALIAN) in patients with and without mandibular asymmetry. Method Preoperative computed tomography images of patients who had undergone orthognathic surgery from January 2016 to December 2018 at a single institution were analyzed. Subjects were classified into two groups as “Asymmetry group” and “Symmetry group”. The distance from the most anterior and most inferior points of the ALIAN (IANant and IANinf) to the vertical and horizontal reference planes were measured (dAnt and dInf). The distance from IANant and IANinf to the mental foramen were also calculated (dAnt_MF and dInf_MF). The length of the mandibular body and symphysis area were measured. All measurements were analyzed using 3D analysis software. Results There were 57 total eligible subjects. In the Asymmetry group, dAnt and dAnt_MF on the non-deviated side were significantly longer than the deviated side (p < 0.001). dInf_MF on the non-deviated side was also significantly longer than the deviated side (p = 0.001). Mandibular body length was significantly longer on the non-deviated side (p < 0.001). There was no significant difference in length in the symphysis area (p = 0.623). In the Symmetry group, there was no difference between the left and right sides for all variables. Conclusion In asymmetric patients, there is a difference tendency in the ALIAN between the deviated and non-deviated sides. In patients with mandibular asymmetry, this should be considered during surgery in the anterior mandible.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1044
Author(s):  
Daniel Jones ◽  
Jeffery A. Secrest

The natural extension to the SU(5) Georgi-Glashow grand unification model is to enlarge the gauge symmetry group. In this work, the SU(7) symmetry group is examined. The Cartan subalgebra is determined along with their commutation relations. The associated roots and weights of the SU(7) algebra are derived and discussed. The raising and lowering operators are explicitly constructed and presented. Higher dimensional representations are developed by graphical as well as tensorial methods. Applications of the SU(7) Lie group to supersymmetric grand unification as well as applications are discussed.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 370 ◽  
Author(s):  
Modjtaba Ghorbani ◽  
Matthias Dehmer ◽  
Shaghayegh Rahmani ◽  
Mina Rajabi-Parsa

Every three-connected simple planar graph is a polyhedral graph and a cubic polyhedral graph with pentagonal and hexagonal faces is called as a classical fullerene. The aim of this paper is to survey some results about the symmetry group of cubic polyhedral graphs. We show that the order of symmetry group of such graphs divides 240.


2001 ◽  
Vol 57 (6) ◽  
pp. 766-771 ◽  
Author(s):  
Richard M. Thompson ◽  
Robert T. Downs

An algorithm has been developed that generates all of the nonequivalent closest-packed stacking sequences of length N. There are 2 N + 2(−1) N different labels for closest-packed stacking sequences of length N using the standard A, B, C notation. These labels are generated using an ordered binary tree. As different labels can describe identical structures, we have derived a generalized symmetry group, Q ≃ D N × S 3, to sort these into crystallographic equivalence classes. This problem is shown to be a constrained version of the classic three-colored necklace problem.


Sign in / Sign up

Export Citation Format

Share Document