scholarly journals Comparative Study between Imprinted Polymer Technology and Economic Adsorption Methodologies for the Removal of Arsenic Species from Water

2021 ◽  
Vol 1 (2) ◽  
pp. 58-63
Author(s):  
Nurlin Abu Samah

Among the various arsenic sources in the environment, water may pose the greatest threat to human health. Arsenic and its compounds are known to have adverse health effects on humans, including skin cancer, bladder cancer, kidney cancer, and lung cancer, as well as vascular diseases of the legs and feet. There are a few separation methods that have been studied to remove arsenic species from water. Methods to remove arsenic species such as adsorption and ion exchange, coagulation and flocculation and membrane filtration have been developed to remove arsenic species from water. However, certain separation methods require a sophisticated equipment and are too expensive. From the different possible methods, this review is based in adsorption studies using imprinted polymer technology and economic sorbents as a media to remove arsenic from water. The details of adsorption processes for imprinted polymer technology have been discussed briefly and the comparative properties for arsenic species removal using different types of sorbents has been addressed significantly for being a user-friendly, highly extended and inexpensive methodology. However, a few drawbacks for each sorbent have been determined and the details was included in this review.

Author(s):  
J.P.H. Perez ◽  
H.M. Freeman ◽  
J.A. Schuessler ◽  
L.G. Benning

2017 ◽  
Vol 37 (1) ◽  
pp. 221-231 ◽  
Author(s):  
Prashant Kumar Mishra ◽  
Amit Saxena ◽  
Ashok Singh Rawat ◽  
Pradeep Kumar Dixit ◽  
Rakesh Kumar ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1385 ◽  
Author(s):  
Jan Back ◽  
Werner Stadlmayr ◽  
Simon Jabornig ◽  
Florian Winkler ◽  
Karl Winkler ◽  
...  

Arsenic in drinking water resources and, especially, in groundwater, represents a severe health problem for millions of people in affected regions. This paper investigates a removal technology combining non-thermal plasma at a reaction time of 30 min, which has improved the downstream coagulation and the filtration efficiency. The results show removal rates of total arsenic over 98%. In addition, WHO limits of less than 10 g / L could be achieved in both batch and continuous set-ups. A difference in effective over potential of the NTP reaction of 32 m V over a reaction using air as oxidant was calculated. Kinetic data of arsenic concentrations over time fitted a pseudo first-order reaction. The proposed process combination has shown to be a simple and energy-saving alternative compared to conventional oxidation and adsorption technologies by exploiting the ’enhancer’ effect of ozone and other reactive oxygen species within the NTP.


2013 ◽  
Vol 21 (5) ◽  
pp. 3218-3229 ◽  
Author(s):  
Imran Ali ◽  
Zeid A. Al-Othman ◽  
Abdulrahman Alwarthan ◽  
Mohd Asim ◽  
Tabrez A. Khan

2016 ◽  
Vol 17 (3) ◽  
pp. 889-896 ◽  
Author(s):  
Faten B. Hussein ◽  
Nidal H. Abu-Zahra

A polyurethane (PU) foam nanocomposite impregnated with iron oxide nanoparticles (IONPs) was developed to remove arsenic (As) from drinking water at ppb concentrations. The effect of synthesis and application parameters such as the size of IONPs, pH levels, weight of adsorbents, and arsenic concentrations on the performance of PU-IONP adsorbents in removing arsenic were studied. The prepared adsorbents were characterized by scanning electron microscopy and energy dispersive X-ray microscopy to evaluate the microstructure of PU-IONPs and the surface adsorption of arsenic species, respectively. Atomic absorption spectrometry was conducted to measure the concentration of arsenic in the treated solutions in order to calculate the removal capacity of PU-IONPs. The experimental results revealed that decreasing the size of IONPs from 50–100 nm to 15–20 nm yields a higher removal capacity. Increasing the weight of the used adsorbents and the contact time led to an increase in the removal capacity as well. As the arsenic species (III and V) concentration increased in the solution, the removal capacity of PU-IONPs decreased. In a column study, a long-term cyclic operation mode was found to be very effective in removing arsenic; 100% removal capacity was achieved when 500 ml of As solution (100 ppb) was treated.


2021 ◽  
Vol 13 (11) ◽  
pp. 6338
Author(s):  
Alfredo Gonzalez-Perez ◽  
Kristofer Hägg ◽  
Fabrice Duteil

Understanding the character of natural organic matter (NOM) and assessing its impact on water quality is paramount for managers of catchments and water utilities. For drinking-water producers, NOM affects disinfectant demand and the formation of by-products which can have adverse health effects. NOM content in raw waters also has an impact on water treatment processes by increasing required coagulant dosages, reducing the effectiveness of adsorption processes and fouling membrane systems. This study investigated the effects of calcium chloride (CaCl2) as a co-coagulant in Al3+ and Fe3+ assisted coagulation, flocculation and sedimentation processes for NOM-removal from raw water collected from Lake Bolmen, in southern Sweden. Jar tests were conducted at Ringsjö Water Works (WW), a surface water treatment plant (WTP), to investigate the potential reduction in primary coagulants aluminum sulphate (Al2(SO4)3) and ferric chloride (FeCl3). This work shows that CaCl2 can, in certain situations, reduce the need for primary coagulants, which would reduce the environmental impact and costs associated with primary coagulant consumption.


Sign in / Sign up

Export Citation Format

Share Document