scholarly journals Performance of Near Dry Hard Machining Through Pressurised Air Water Mixture Spray Impingement Cooling Environment

Author(s):  
R. Kumar ◽  
A.K. Sahoo ◽  
P.C. Mishra ◽  
R.K. Das

The present paper emphasizes on experimental investigation, mathematical modelling, optimisation, tool life and cost analysis during machining of AISI D2 (heat treated) (55±1 HRC) steel using uncoated carbide tool through a novel method under spray impingement cooling environment. Taguchi based L16 orthogonal array was utilised to conduct the experiments. Analysis of variance with 95% confidence level shows that the feed and depth of cut, are the most compelling factor towards surface roughness as well as chip reduction coefficient whereas cutting speed is the utmost compelling feature associated to flank wear as well as chip-tool interface temperature. Optimised result is identified as v1-f1-d1 (machining speed of 63 m/min; cutting feed of 0.04 mm/rev and depth of cut of 0.1 mm) based on grey relational analysis and tool life is found to be 15 minutes at optimised cutting conditions. Flank wear due to abrasion, catastrophic failure due to diffusion, chipping and notch wear are noticed as the major tool wear mechanisms in hard turning. Mathematical machinability models show statistically significance because due to the superior coefficient of correlations. As the global machining cost for each part is less, uncoated carbide tools can machine effectively, efficiently and economically at optimum cutting conditions under spray environment.

2014 ◽  
Vol 903 ◽  
pp. 9-14
Author(s):  
Nor Ain Jamil Hosni ◽  
Mohd Amri Lajis ◽  
Noor Hakim Rafai

This study investigates the tool wear of PVD TiAlN multilayer coated end mill inserts when machining AISI D2 hardened steel in dry conditions. The experiment tests consisting three levels of cutting speed, Vc (80, 100, 120 m/min) and three levels of radial depth of cut, ae (3, 4, 5 mm) was used for the study. The PVD TiAlN coated carbide insert performs satisfactory under the conditions tested, as reasonable tool life is recorded. By linking the machining tests and tool life curves, the wear behaviour of the coated insert was described. It is observed that wear of the tool mainly occurred on the flank wear. Tool life decreasing and volume material removal (VMR) increasing as cutting speed and radial depth of cut increased due to higher temperature generated and contact area immerse, respectively. Tool failure modes and wear mechanisms were examined at various cutting parameters. Built-up edge (BUE), groove and micro-chipping were found to be the predominant tool failure modes for cutting tools. The highest volume material removal, VMR attained was 3750 mm3, meanwhile the higest tool life, TL was 9.69 min.The combination of cutting conditions that gave the best response for different components of tool wear, tool life and surface integrity.


2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


Author(s):  
Muataz Al Hazza ◽  
Khadijah Muhammad

High speed machining has many advantages in reducing time to the market by increasing the material removal rate. However, final surface quality is one of the main challenges for manufacturers in high speed machining due to the increasing of flank wear rate. In high speed machining, the cutting zone is under high pressure associated with high temperature that lead to increasing of the flank wear rate in which affect the final quality of the machined surface. Therefore, one of the main concerns to the manufacturer is to predict the flank wear to estimate and predict the surface roughness as one of the main outputs of the machining processes. The aim of this study is to determine experimentally the optimum cutting parameters: depth of cut, cutting speed (Vc) and feed rate (f) that maintaining low flank wear (Vb). Taguchi method has been applied in this experiment. The Taguchi method has been universally used in engineering analysis.  JMP statistical analysis software is used to analyse statically the development of flank wear rate during high speed milling of hardened steel AISI D2 to 60 HRD. The experiment was conducted in the following boundaries: cutting speed 200-400 m/min, feed rate of 0.01-0.05 mm/tooth and depth of cut of 0.1-0.2 mm. Analysis of variance ANOVA was conducted as one of important tool for statistical analysis. The result showed that cutting speed is the most influential input factors with 70.04% contribution on flank wear.


2010 ◽  
Vol 26-28 ◽  
pp. 1052-1055
Author(s):  
Li Fa Han ◽  
Sheng Guan Qu

The wear characteristics and life of Al2O3/(W,Ti)C ceramic tool in turning NbCp-reinforced iron-based P/M composites was investigated. Experimental results indicate that cutting parameters have an influence on tool wear, among which cutting speed and depth of cut seem to be more prominent. The maximum flank wear rapidly increases as the increase in cutting speed and depth of cut. While, it increases gradually as the decrease in feed rate. Meanwhile, an empirical model of tool life is established, from which the influence of cutting speed and depth of cut on tool life is far greater than that of feed rate. Also from the empirical model, the preferable range of cutting parameters was obtained.


2020 ◽  
Vol 22 (4) ◽  
pp. 41-53
Author(s):  
Manojkumar Sheladiya ◽  
◽  
Shailee Acharya ◽  
Ghanshyam Acharya ◽  
◽  
...  

Introduction. The machinability is typical criteria to be investigated and different authors suggested different parameters describing its quantification. Different parameters i. e. speed, feed, depth of cut, tool work-piece combination, machine types and its condition, cutting fluid, machinist expertise, etc. are contributing directly to the tool life. The selection of the tool for the machining impacts greatly on the economic viability of the machining in terms of energy usage and tooling costs. The method of investigation. The current research emphasis mainly on tool life investigation when machining the mild steel specimens ISRO 50, BIS 1732:1989 at constant cutting speed i.e. 200 m / min. In the industries the mild steel material is commonly used for various products manufacturing. Considering the high demands on productivity and surface finish, machining at 200 m / min is the preferred. The computerized numerical control machine (CNC DX-150) is used for the turning. The four corner insert (TNMG 120408) is used for different machining times i.e. 10, 15, 20 and 25 minutes respectively. The flank wear of the tool is measured with calibrated optical microscope. The temperature of the tool corner during machining is continuously measured for possible impact of temperature on bonding properties of the tool insert and impact on red hardness. Results and discussion. The plot of flank wear vs. machining time will give the value of tool life. The other quality output parameter, such as surface roughness, is measured after machining, indicating surface irregularities in root means square value. Efforts have been made to identify the relationship of tool life, machining time, the quantity of metal removed, surface roughness, and tool bit temperature.


2019 ◽  
Vol 18 (04) ◽  
pp. 625-655 ◽  
Author(s):  
Asutosh Panda ◽  
Sudhansu Ranjan Das ◽  
Debabrata Dhupal

The present study addresses the machinability investigation in finish dry hard turning of high strength low alloy steel with coated ceramic tool by considering cutting speed, feed and depth of cut as machining parameters. The technological parameters like surface roughness, flank wear, chip morphology and economical feasibility have been considered to investigate the machinability performances. Twenty seven set of trials according to full factorial design of experiments are performed and analysis of variance, multiple regression method, Taguchi method, desirability function approach and finally Gilbert’s approach are subsequently applied for parametric influence study, mathematical modeling, multi-response optimization, tool life estimation and economic analysis. Results indicated that feed and cutting speed are the most significant controlled as well as dominant factors for hard turning operation if the minimization of the machined surface roughness and tool flank wear is considered. Abrasions, adhesion followed by plastic deformation have been observed to be the principal wear mechanism for tool life estimation and observed tool life for coated ceramic insert is 47[Formula: see text]min under optimum cutting conditions. The total machining cost per part is ensued to be lower ($0.29 only) as a consequence of higher tool life, reduction in downtime and enhancement in savings, which finds economical benefits in hard turning. The current work demonstrates the substitution of conventional, expensive and slow cylindrical grinding process, and proposes the most expensive CBN tool alternative using coated ceramic tools in hard turning process considering techno-economical and ecological aspects.


Author(s):  
Sunil Dutta ◽  
Suresh Kumar Reddy Narala

In this paper, the machinability of a fabricated AM alloy (Mg-7 wt%Al-0.9 wt%Mn) has been examined. The novel AM alloy was subjected to turning using a systemized CNC setup. The input turning variables: feed ( f), cutting speed ( v), and depth of cut (DOC) were suitably altered to analyze effects on response variables such as cutting force ( Fc), cutting temperature ( T), and tool life ( TL). Subsequently, the microstructure characterization of the machined surface was done for validating the experimental results. The experimental results established the influence of input parameters on response variables. The cutting force was mostly dominated by DOC, and the cutting temperature was predominantly influenced by cutting speed. The SEM images exhibited the adverse effect of higher values of input parameters on the surface condition. The finest surface was observed at f: 0.1 mm/rev, DOC: 0.5 mm, and v: 115 m/min. Further, the analysis of tool life was done by assessing the flank wear; the measured data showed the significant influence of cutting speed on flank wear. The maximum tool life of 51 min was achieved at the lowest levels of three input parameters.


Author(s):  
I A Choudhury ◽  
M A El-Baradie

A series of machining experiments of Inconel 718 has been carried out using coated and uncoated carbides. The paper describes the effects of cutting variables (speed, feed and depth of cut) on cutting forces and tool life. Carbide tools in the form of 80° rhomboid shaped inserts without any chip breaker have been used at different cutting conditions. The machining parameters have been optimized by measuring cutting forces. Flank wear was considered as the criterion for tool life. A comparison between the uncoated and coated tools has been made using the Taylor's tool life exponents of speed, feed and depth of cut. The tool life of coated tools was not found to be better than that of the uncoated tools.


Author(s):  
Richard Y. Chiou ◽  
Vitaliy Aynbinder ◽  
L. G. Stepanskiy ◽  
Lin Lu ◽  
Shreepud Rauniar ◽  
...  

Tool wear of machine tools and large usage of cutting fluids is one of the major problems in manufacturing. Cutting fluids are used to cool down the tool and have been shown to cause environmental problems in machine shops. Tool life and temperature have an inverse relationship, namely that the higher the temperature at the tool-chip interface is, the lower the tool life will be, and vice-versa. In this paper an innovative approach was taken to create an analytical solution to the effect of the embedded heat pipe on temperature of the tool and tool life. It has been well documented in the industry that the major factors that contribute to tool wear are the material properties of the tool insert and the work piece, cutting speed, depth of cut and feed rate. The analytical approach taken in this project is unique because it does not only take into account the complex boundary conditions of heat transfer but also the aforementioned factors and variety of possible cutting conditions. The analytical solution is in the form of set of equations which were developed to simulate the behavior of the tool insert under normal cutting conditions. Both cases, with and without heat-pipe were considered. The predicted temperature data was then compared to the existing experimental data, with very good results. In the end the project yields a quantitative evaluation on influence of mechanical properties of insert, work piece, heat pipe and cutting conditions on tool wear.


2013 ◽  
Vol 1 (2) ◽  
pp. 44-55
Author(s):  
Niema H Elmosawi ◽  
Shalan Gannam Al ◽  
Hamid H. Ali

The aim of the work is to study the effect of cutting condition on cutting bit of the turning machine while working on different metal ,Through using a special type of commonly used cutting tool bit in (HSS) due to the high qualifications it is characterized by cutting ,and its endurance of high temperature .Two types of metal are used in cutting (Aluminum, Mild steel),relying on the working conditions used in the machine(feed, cutting speed، depth of cut),while conducting working processes via using cooling liquid ,and without it .The wear test results shown that there are two types of wear measured by the (tool micker microscope) :Flank wear and Greater wear, are formed on the cutting edge of the tool bits as a result of the great effect of cutting conditions on the tool bit and the high temperature of the chips ;in addition to the occurrence of resulting edge on the cutting edge of the tool bits in the process of cutting aluminum , with the use of cooling liquids which prolong the of cutting tool and decrease the periods of re-grinding the cutting tool bit. 


Sign in / Sign up

Export Citation Format

Share Document