scholarly journals Analysis of Organic Germanium Ge-132 as Cetane Improver in Diesel Combustion Process

Author(s):  
S. Asri ◽  
M. F. Othman ◽  
A. Abdullah ◽  
Z. Abdullah ◽  
Z. Azmi

The depletion of global petroleum reserves and growth in awareness regarding the environmental pollution of diesel engines urge the reinforcement for the development of alternative fuels. This research experimentally investigated the effect of diesel-organic germanium (Ge-132, 2-Carboxyl Sesquioxide) fuels blend on combustion characteristics, engine performances and exhaust emissions on a direct injection diesel engine at the speed of 1800 rpm at various brake effective pressures. On this occasion, the Ge-132 compound used in this experiment was widely utilized in the medical industry as a dietary supplement that contains therapeutic qualities such as oxygen enrichment, free radical scavenging, and immunity enhancement. Three fuel blends employed in this experiment were Ge5, Ge8, and Ge10 that are used to compare their performances with diesel fuel. In brief, the result stated that the fuel blend of Ge10 showed the highest value of cetane number, which was 8.23% higher compared to the diesel fuel followed by Ge8 and Ge5, which were 7.84 and 7.45% higher than the diesel fuel respectively. Besides, from the experiment, Ge5 decreased the value of BSFC by 26.6% compared to diesel fuel and improved the value of BTE that was 25.6% higher than the diesel fuel.

Author(s):  
M M Roy

This study investigated the effect of n-heptane and n-decane on exhaust odour in direct injection (DI) diesel engines. The prospect of these alternative fuels to reduce wall adherence and overleaning, major sources of incomplete combustion, as well as odorous emissions has been investigated. The n-heptane was tested as a low boiling point fuel that can improve evaporation as well as wall adherence. However, the odour is a little worse with n-heptane and blends than that of diesel fuel due to overleaning of the mixture. Also, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing n-heptane content. The n-decane was tested as a fuel with a high cetane number that can improve ignition delay, which has a direct effect on wall adherence and overleaning. However, with n-decane and blends, the odour rating is about 0.5-1 point lower than for diesel fuel. Moreover, the aldehydes and THC are significantly reduced. This is due to less wall adherence and proper mixture formation.


Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Bohuslav Peterka ◽  
Miroslav Müller ◽  
Michal Holubek ◽  
...  

Liquid biofuels for compression ignition engines are often based on vegetable oils. In order to be used in compression ignition engine the vegetable oils have to be processed because of their high viscosity or it is also possible to use vegetable oils in fuel blends. In order to decrease the viscosity of the fuel blends containing crude vegetable oil the alcohol-based fuel admixtures can be used. The paper describes the effect of rapeseed oil–diesel fuel–n-butanol blends on combustion characteristics and solid particles production of turbocharged compression ignition engine. The 10% and 20% concentrations of n-butanol in the fuel blend were measured and analysed. The engine Zetor 1204, located in tractor Zetor Forterra 8641 with the power of 60kW and direct injection was used for the measurement. The engine was loaded through power take off shaft of the tractor using mobile dynamometer MAHA ZW500. The measurement was carried out in stabilized conditions at 20%, 60% and 100% engine load. The engine speed was kept at 1950 rpm. Tested fuel blends showed lower production of solid particles than diesel fuel and lower peak cylinder pressure and with increasing concentration of n-butanol in the fuel blend the ignition delay was prolonged and premixed phase of combustion was increased.


2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


2014 ◽  
Vol 660 ◽  
pp. 426-430 ◽  
Author(s):  
Syaiful ◽  
Sobri ◽  
Nathanael P. Tandian

The aim of this study is to experimentally investigate an effect of low and high purity methanol on a performance and smoke emission of diesel engine with cooled EGR system fueled by diesel fuel and jatropha oil blend. A four-stroke water cooled direct injection (DI) diesel engine with cooled EGR system was used in this work. The diesel engine was fueled by diesel fuel, jatropha oil and low (LPM) or high (HPM) purity methanol blends at the ratio of 100/0/0, 75/20/5, 70/20/10 and 65/20/15 % on volume basis respectively for the variation of engine loads in the range of 25 to 100% with 25% increments at 2000 rpm. Each load for every fuel blend was given by the 0% and 16.5% EGR rates. The results are found that the brake power for diesel engine fueled by diesel fuel, jatropha oil and LPM is approximately 8% lower than that of diesel engine fueled with the neat diesel, while it increases to 5.24% at the low load and reduces to 6.11% at the high load by injecting HPM in the fuel blends. At the same case, BSFC increases approximately 4.5% by injecting LPM in the fuel blends. The brake thermal efficiency rises approximately by 3.3% with LPM in the fuel blends, whereas it increases approximately 6% by injecting HPM. The smoke opacity reduces approximately by 70% with LPM or HPM in the fuel blends.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1241 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas ◽  
Irena Kanapkienė

The paper presents the effects made by a fossil diesel–HRD (Hydrotreated Renewable Diesel) fuel blend containing Ethanol (E) or Biodiesel (B) on the combustion process, Indicated Thermal Efficiency (ITE), smoke, and pollutant emissions when running a turbocharged Common Rail Direct Injection (CRDI) engine under medium (50% of full load), intermediate (80% of full load), and full (100%) loads at maximum torque speed of 2000 rpm. These loads correspond to the respective Indicated Mean Effective Pressures (IMEP) of 0.75, 1.20, and 1.50 MPa, developed for the most common operation of a Diesel engine. The fuel-oxygen mass content was identically increased within the same range of 0 (E0/B0), 0.91 (E1/B1), 1.81 (E2/B2), 2.71 (E3/B3), 3.61 (E4/B4), and 4.52 wt% (E5/B5) in both E and B fuel groups. Nevertheless, these fuels still possessed the same blended cetane number value of 55.5 to extract as many scientific facts as possible about the widely differing effects caused by ethanol or biodiesel properties on the operational parameters of an engine. Both quantitative and qualitative analyses of the effects made by the combustion of the newly designed fuels with the same fuel-oxygen mass contents of various origins on the engine operational parameters were conducted comparing data between themselves and with the respective values measured with the reference (‘baseline’), oxygen-free fuel blend E0/B0 and a straight diesel to reveal the existing developing trends. The study results showed the positive influence of fuel-oxygen on the combustion process, but the fuel oxygen enrichment rate should be neither too high nor too low, but just enough to achieve complete diffusion burning and low emissions. The Maximum Heat Release Rate (HRRmax) was 3.2% (E4) or 3.6% (B3) higher and the peak in-cylinder pressure was 4.3% (E3) or 1.1% (B5) higher than the respective values the combustion of the reference fuel E0/B0 develops under full load operation. Due to the fuel-oxygen, the combustion process ended by 7.3° (E4) or 1.5° crank angle degrees (CADs) (B4) earlier in an engine cycle, the COV of IMEP decreased to as low as 1.25%, the engine efficiency (ITE) increased by 3.1% (E4) or decreased by 2.7% (B3), while NOx emissions were 21.1% (E3) or 7.3% (B4) higher for both oxygenated fuels. Smoke and CO emissions took advantage of fuel-oxygen to be 2.9 times (E4) or 32.0% (B4) lower and 4.0 (E3) or 1.8 times (B5) lower, respectively, while THC emissions were 1.5 times (E4) lower or, on the contrary, 7.7% (B4) higher than the respective values the combustion of the fuel E0/B0 produces under full load operation. It was found that the fuel composition related properties greatly affect the end of combustion, exhaust smoke, and pollutant emissions when the other key factors such as the blended cetane number and the fuel-oxygen enrichment rates are the same in both fuel groups for any engine load developed at a constant (2000 rpm) speed.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2978 ◽  
Author(s):  
Alfredas Rimkus ◽  
Justas Žaglinskis ◽  
Saulius Stravinskas ◽  
Paulius Rapalis ◽  
Jonas Matijošius ◽  
...  

This article presents our research results on the physical-chemical and direct injection diesel engine performance parameters when fueled by pure diesel fuel and retail hydrotreated vegetable oil (HVO). This fuel is called NexBTL by NESTE, and this renewable fuel blends with a diesel fuel known as Pro Diesel. A wide range of pure diesel fuel and NexBTL100 blends have been tested and analyzed: pure diesel fuel, pure NexBTL, NexBTL10, NexBTL20, NexBTL30, NexBTL40, NexBTL50, NexBTL70 and NexBTL85. The energy, pollution and in-cylinder parameters were analyzed under medium engine speed (n = 2000 and n = 2500 rpm) and brake torque load regimes (30–120 Nm). AVL BOOST software was used to analyze the heat release characteristics. The analysis of brake specific fuel consumption showed controversial results due to the lower density of NexBTL. The mass fuel consumption decreased by up to 4%, and the volumetric consumption increased by up to approximately 6%. At the same time, the brake thermal efficiency mainly increased by approximately 0.5–1.4%. CO, CO2, NOx, HC and SM were analyzed, and the change in CO was negligible when increasing NexBTL in the fuel blend. Higher SM reduction was achieved while increasing the percentage of NexBTL in the blends.


Author(s):  
A. Sivakumar ◽  
R. Sathiyamoorthi ◽  
V. Jayaseelan ◽  
R. Ashok Gandhi ◽  
K. Sudhakar

Mineral oil has been used as an insulating fluid in the power industry. However, surplus waste oil poses serious environmental threats because of disposal concerns. Waste to biofuel is an excellent way to deal with waste material from various sources. In this study, the trans-esterification method was utilised to convert the waste-insulating mineral oil into a quality bio-fuel. Waste-insulating transformer oil was converted to biodiesel, and it was tested according to ASTM standards. Four different blends of waste-insulating biodiesel with diesel in 25 per cent (WIOBD25), 50 per cent (WIOBD50), 75 per cent (WIOBD75), and 100 per cent fractions (WIOBD100), were used for performance testing in a direct injection compression ignition (DICI) engine. The combustion parameters such as BSFC, EGT, and BTE were evaluated with varying crank angles and constant engine speed. The waste-insulating biodiesel performance results are then compared with diesel fuel. BSFC increased as the biofuel mixture in diesel was raised, and the brake thermal efficiency (BTE) was significantly reduced compared to diesel for all WIOBD diesel mixtures. Due to the combustion process, a high pressure and heat release rate (HRR) were noticed inside the cylinder with the waste-insulating oil-derived biodiesel samples. WIOBD biodiesel blends produced lower levels of hydrocarbon, carbon monoxide, and smoke emissions than diesel fuel, but greater levels of nitrogen oxides (NOx) were produced than diesel fuel. In addition to lower emissions combined with improved engine performance, the WIOBD25 fuel blend has been found to be experimentally optimal for practical application. As a result, the test findings indicated that WIOBD biodiesel might be used as a substitute for conventional diesel fuel.


Author(s):  
Tamilvanan A. ◽  
K. Balamurugan ◽  
T. Mohanraj ◽  
P. Selvakumar ◽  
B. Ashok ◽  
...  

Biodiesel is proven to be the best substitute for petroleum-based conventional diesel fuel in existing engines with or without minor engine modifications. The performance characteristics of biodiesel as a fuel in CI engine are slightly lower than that of diesel fuel. The emission characteristics of biodiesel are better than diesel fuel except NOX emission. The thermo-physical properties of biodiesel are improved by suspending the nano metal particles in the biodiesel, which make them an observable choice for the use of nanoparticles-added fuels in CI engine. High surface area of nanoparticles that promotes higher operating pressure and heat transfer rates that further quicken the combustion process by providing better oxidation. Thus, it has been inferred that addition of nanoparticles as an additive to biodiesel fuel blends in diesel engines and its effects on performance, combustion, and emission characteristics are discussed in this chapter.


Author(s):  
R Murugan ◽  
D Ganesh ◽  
G Nagarajan

Previous studies on reactivity controlled compression ignition combustion indicated that, reducing the hydrocarbon and carbon monoxide emissions at low load conditions still remains a challenge because of lower in-cylinder temperatures due to lower global reactivity gradient and reduced oxidation process. Research in this direction has not been reported so far and with this motivation, an attempt has been made to increase the global reactivity gradient and oxidation of fuel–air mixture by converting the low reactivity fuel methanol into medium reactivity fuel. This is achieved by mixing high octane oxygenated fuel, methanol (Octane Number: 110), with an oxygenated better cetane and volatility fuels like polyoxymethylene dimethyl ether (Cetane Number: 78) and isobutanol (Cetane Number: 15). The medium reactivity fuel with multiple direct injection of diesel fuel timed the combustion of dual fuel–air mixture to avoid too late or too advanced combustion which are the prime factors in controlling the unburnt emissions in a low temperature combustion process. Four medium reactivity fuel samples, M80IB20, M60IB40, M90P10, and M80P20, on percentage volume basis have been prepared and tested on the modified on-road three-cylinder turbocharged common rail direct injection diesel engine to demonstrate higher indicated thermal efficiency and potential reduction in unburnt and oxides of nitrogen/particulate matter emissions from reactivity controlled compression ignition combustion. Experimental results show that, use of medium reactivity fuel with optimized diesel injection strategy resulted in 66% decrease in hydrocarbon emission and 74% decrease in carbon monoxide emission by enhancing the oxidation of fuel–air mixture at lower temperatures which is evidently noticed in the combustion characteristics. Further reduction in hydrocarbon and carbon monoxide emission of about 90% has been achieved by integrating the diesel oxidation catalyst with the engine.


2019 ◽  
Vol 112 ◽  
pp. 01014
Author(s):  
Adrian Nicolici ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu

The progressive diminution of the oil reserves all over the world highlights the necessity of using alternative fuels derived from durable renewable resource. The use of the alternative fuels represents a viable solution to reduce the pollutant emissions and to replace fossil fuels. Thus, a viable solution is the use of the animal fats in mixture with the diesel fuel at the diesel engines. A D2156 MTN8 diesel engine was firstly fuelled with diesel fuel and then with different blends of diesel fuel-animal fats (5% and 10% animal fats content). In the paper are presented some results of the experimental investigations of engine fuelled with preheated animal fats. The raw animal fats effects on the combustion process and on the pollutant emissions at different engine loads and 1450 rev/min engine speed are showed. The engine cycle variability increases at the animal fats content increase. The cycle variability for maximum pressure, maximum pressure angle and indicated mean effective pressure is analysed. The cycle variability coefficients values don’t exceed the recommended values of the standard diesel engine.


Sign in / Sign up

Export Citation Format

Share Document