scholarly journals Adjustable Valve Semi-Active Suspension System for Passenger Car

Author(s):  
M. R. Ahmed ◽  
A. R. Yusoff ◽  
F. R. M. Romlay

The suspension of the car plays a very important role in the safety and the comfort of the vehicle and for absorbing the shock waves and give comfort for the driver and passenger. This paper improves the performance of an automobile suspension system by developing electronically adjustable semi-active shock absorber. This achieved by attaching stepper motor for each shock absorber which helps in adjusting the bleed orifice to a certain position that alternates the hydraulic oil flow in the shock absorber between piston’s chamber during the process of compression and rebound. To evaluate the effect of developed semi-active shock absorber on the dynamic behaviour of the vehicle, several tests were carried out on different types of road condition (bumpy, straight-line and roundabout). These tests were used to evaluate the acceleration and ride quality. There is a great range in response when the bleed orifice is opened reached up to 35% between the stiff and soft setting. The value of root means square acceleration (RMS) was calculated and compared with the standard of human exposure to whole-body vibration, which shows an error of 6% slightly. The result shows the effect of electronically controllable shock absorber on a vehicle’s dynamic behaviour — the advantage of electronics to improve the performance of ride comfort and reduced the harms due to undesired vibration.

Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


2011 ◽  
Vol 299-300 ◽  
pp. 1221-1226
Author(s):  
Li Jun Zhang ◽  
Hong Liang Liu ◽  
Yue Zhong Li

The rubber mount components in suspension system have great influence on ride comfort of automobile. Based on the complex stiffness model and equivalent model of shock absorber rubber mount, the suspension system model with 2DOF including rubber mount components are established by using virtual coordinate. The influences of the stiffness of rubber mount component on the responses of suspension are analyzed in frequency and time domains. The results show that proper stiffness of rubber mount can decrease the acceleration of body by about 20% and dynamic load of tire by about 30% in the frequency range from 5 to 12 Hz compared with that without rubber mount. In addition, the stiffness of rubber mount component leads to lag acceleration of body and higher nature frequency of wheel.


2017 ◽  
Vol 67 (3) ◽  
pp. 269
Author(s):  
Mukund W. Trikande ◽  
Vinit V. Jagirdar ◽  
Vasudevan Rajamohan ◽  
P.R. Sampat Rao

<p>The objective of the study is to evaluate the performance of various semi-active suspension control strategies for 8x8 multi-axle armoured vehicles in terms of comparative analysis of ride quality and mobility parameters during negotiation of typical military obstacles. Since the cost, complexity and time precludes realisation of actual system, co-simulation technique has been effectively implemented for this investigation. Co-simulation combines advanced virtual prototyping and control technology which offers a novel approach to investigate the dynamics of such complex system. The simulations for the integrated control system along with multi body model of the vehicle are carried out for the control strategies, viz. continuous sky hook control, cascade loop control and cascade loop with ride control and compared with passive suspension system. The vehicle with 8x8 configuration is run on the real world obstacle profiles, viz. step, trench, trapezoidal bump and corrugated road and the effect of control strategies on ride comfort, wheel displacement and ground reaction is presented. It is observed that cascade loop with ride control in semi-active mode offers better vehicle ride comfort while crossing the said obstacles. The improved performance parameters are achieved through stabilisation of heave, pitch and roll motions of the vehicle through outer loop and isolation of vehicle level uneven disturbances through the fuzzy logic controller employed in inner loop.</p>


Author(s):  
R. Scott Pierce ◽  
Caleb Whitener ◽  
Sudhir Kaul

This paper presents experimental results from the testing of a semi-active damping system in an off-road bicycle (bike). Magnetorheological dampers are being increasingly used in automotive applications to enhance damping capability of a suspension system or to mitigate the trade-off between ride comfort and handling. A magnetorheological (MR) damper requires a relatively low amount of energy to control damping characteristics, and behaves as a passive damper in the absence of any power input. This study investigates the use of a semi-active magnetorheological damper for the rear suspension of a mountain bike. The performance of this damper has been compared to the current shock absorber on the bike. All testing has been performed on a shaker table and the performance of the damper has been evaluated by comparing the input acceleration at the hub of the rear wheel to the acceleration at the seat of the bike. The main aim of this study is to investigate the viability of using an MR damper in a mountain bike suspension system. Test results indicate that the performance of the semi-active MR damper is comparable to the current shock absorber. Furthermore, the MR damper lends itself to hands-off control that will be investigated in a future study. Therefore, it can be concluded from preliminary testing that an MR damper can be used in a mountain bike to effectively control damping.


Author(s):  
Bitopan Das ◽  
Rajdeep Ghosh

Vehicles with off-road capabilities in the present times have begun to focus more on ride comfort. One of the most common uses of such vehicles is to help commuters travel on rough terrain, away from paved roads. Vertical suspensions carry out the work of minimizing the impact from objects like rocks and stones that comprise the terrain. However, such undulations in the terrain are not just vertically bulged. The geometry of the object, i.e., the rock/stone and the wheel coming in contact with the object gives rise to the familiar vertical impact forces for which vertical suspensions are provided. The other component of the impact force arising from the same irregular geometry of the undulation, i.e., the horizontal component of impact force which acts parallel to the axle of the wheels remains neglected. This might lead to passengers experiencing sideways swaying while inside the vehicle, even if there are independent vertical suspensions. In this paper, a study of the effects of horizontal component of impact forces on off-road vehicles was done and after that, spring-shock absorber arrangements to counter these forces were analyzed with springs of different spring-stiffness values.


2020 ◽  
pp. 168-168
Author(s):  
Dragan Sekulic ◽  
Ivan Ivkovic ◽  
Dusan Mladenovic ◽  
Davor Vujanovic

This paper analyzes the effects of intercity bus suspension system oscillatory parameters on driver's ride comfort and road damage. The analysis has been carried out through simulation by means of validated in-plane bus model with six degrees of freedom excited by real road roughness signal. Low root-mean-square values of the weighted vertical acceleration (less than 0.315 m/s2) have been achieved by shock-absorbers with lower damping coefficient and softer suspension system springs. Low values of dynamic load coefficient provide low shock-absorber damping and softer springs. However, low crest factor values for both axles are accomplished for high shock-absorber damping and softer springs in bus suspension system. Results from this analysis could be used as reference for selecting proper oscillatory parameter values when designing road-friendly bus suspension system which in turn would increase vehicle energy efficiency. Presented methods, results and analyzes are the part of wider methodology for assessing the impact of bus suspension system on fuel consumption and CO2 emission.


2014 ◽  
Vol 67 (1) ◽  
Author(s):  
M. Fahezal Ismail ◽  
Y. M. Sam ◽  
S. Sudin ◽  
K. Peng ◽  
M. Khairi Aripin

This paper describes the mathematical modeling and control of a nonlinear active suspension system for ride comfort and road handling performance by using multi-body dynamics software so-called CarSim. For ride quality and road handling tests the integration between MATLAB/Simulink and multi-body dynamics system software is proposed. The control algorithm called the Conventional Composite Nonlinear Feedback (CCNF) control was introduced to achieve the best transient response that can reduce to overshoot on the sprung mass and angular of control arm of MacPherson active suspension system. The numerical experimental results show the control performance of CCNF comparing with Linear Quadratic Regulator (LQR) and passive system. 


2009 ◽  
Vol 62-64 ◽  
pp. 645-654 ◽  
Author(s):  
C. Mbohwa ◽  
J. Agwa-Ejon ◽  
C. Murasiki

This paper discusses the mathematical modeling of a new improved design of the carriage bogie suspension system with emphasis on design for human comfort. The research mainly covered the shock absorbers with the aim of improving ride comfort at higher speeds. The paper focuses on how to reduce vibration transmission to the carriage while designing a railway bogie suspension damping system that is easier to maintain but does not compromise on quality with particular interest in dynamic attributes of the shock absorber. The principal research issues are introduced and looked at in the modeling and the results so obtained are used to calculate the relative transmissibility in the motion of the carriage.


Sign in / Sign up

Export Citation Format

Share Document