Segmentation of a Soft Body and its Bending Performance using Thin McKibben Muscle

Author(s):  
Mohd Firdaus Mohamed ◽  
Asyikin Sasha Mohd Hanif ◽  
Ahmad Athif Faudzi

In recent years, soft actuator has been extensively developed in robotic research. This type of robot is expected to work with human with its flexible and adaptable advantage. The actuator material is soft, light, safe and high compliant. Due to these factors, soft McKibben is of interest as an actuator for this research for bending application. This paper introduces a variant bending analysis of a soft body manipulated using soft McKibben actuators. A series of 1.80 mm width with the length of 120.0 mm McKibben actuator is used to control the bending motion. The design consists of four McKibben actuators arranged in parallel and compacted in a soft body. The bending behavior was evaluated using an experimental test with a variety of pneumatic input pressure and length section on the actuator. The experiment showed that the bending angle was influenced by the segmentation length of the actuator, where the segmentation length and increased input pressure also allow more bending on the actuator. The actuator with lot of section gave more bending response compared to the actuator with lesser section. With the performance exhibited from this study, McKibben actuator can be applied in a wider use for continuum manipulator.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chee Zhou Kam ◽  
Ahmad Beng Hong Kueh

A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.


Author(s):  
Muhammad Rusydi Muhammad Razif ◽  
Ahmad Athif Faudzi ◽  
Ili Najaa Aimi Mohd Nordin ◽  
Tariq Rehman ◽  
Dyah Ekashanti Octorina Dewi

<span>This paper presents a study on bending and rotational properties of two-chambers soft actuator for underwater application. Previous study demonstrated the actuator characteristics required to optimize the bending performance and its potential to perform underwater because of the actuator material. However, there is less study of the actuator performance underwater as well as how the actuator tips rotating during actuator bending motion. In this paper, three tests have been proposed which are comparisons of bending angle simulation and experiment in air environment, bending angle performance in air and underwater environment as well as rotational angle of actuator tip in air environment. The bending angle of soft actuator is measured based on displacement in horizontal and vertical axis and for rotational angle, gyro sensor has been used. Based on the analysis, it is proven that the fabricated soft actuator performs almost similar trend to the simulation. It is also demonstrated that the actuator performs almost double bending motion underwater environment compared to in air environment at the same pressure, and the actuator is able to rotate 90º in air environment with the supplied pressure 52 kPa.</span>


Author(s):  
Hui Tian ◽  
Zhujun Zhang ◽  
Zhihua Yuan ◽  
Xiaochan Liu ◽  
Yuyan Qi ◽  
...  

In view of the problems of low stiffness, small driving force and large balloon effect existing in the current soft actuator, this paper proposes an optimization method to enhance the overall stiffness of the soft gripper by using rigid components based on the multi-cavity soft pneumatic actuator. This paper introduces the main components of the actuator: the soft part poured by liquid silica gel, and the open rectangular rigid structures by 3D printed. The kinematics model of the finger is established based on the Piecewise Constant Curvature model(PCC). The bending performance of the enhanced stiffness gripper is verified by finite element analysis(FEA): the tip force of actuator increased with the increase of the number of rigid structures when the bending angle is constant. According to the and experimental data, the overall stiffness of soft gripper is increased by the rigid structure without affecting the flexibility of operation. And the maximum weight which can grasp is 3.4 times that of the traditional soft gripper, improved the grasping range of the soft gripper effectively.


2007 ◽  
Vol 2 (1) ◽  
pp. 155892500700200 ◽  
Author(s):  
Paul V. Cavallaro ◽  
Ali M. Sadegh ◽  
Claudia J. Quigley

The bending performance of fabric air beams varies significantly from conventional beams. Both are dependent upon the constitutive relations of the material, but air beams are further dependent upon the thermodynamics of the internal air. As the governing energy balance demonstrates, air beam bending is dependent upon strain energy and PV-work (air compressibility). The relative importance of these terms will vary with pressure, volume changes and shear deformations. To this point, a swatch of uncoated plain-woven fabric was subjected to mechanical tests and its material properties determined. Attempts at using the stress-strain measurements in air beam models, assumed constructed with the same fabric, were made. The models accounted for fluid-structure interactions between the air and fabric. Homogenization methods were used and were necessary to provide computational efficiencies for the macro-scale air beam model while attempts were made to incorporate the combined extension and shear behaviors observed during the material tests. Bending behavior was numerically investigated for several constitutive cases. The models were solved with the ABAQUS-Explicit program over a range of pressures. The fabric strain energy and PV-work were tracked and compared. It was concluded that strain energy and PV-work must be considered in deflection analyses of uncoated plain-woven fabric air beams.


2020 ◽  
Vol 10 (5) ◽  
pp. 1829
Author(s):  
Yao Wei ◽  
Shihao Li ◽  
Xiaofan Zhang ◽  
Yanjun Fu ◽  
Kejian Chen

The demand for multi-functional soft actuators with simple fabrication and fast response to multiple stimuli is increasing in the field of smart devices. However, for existing actuators that respond to a single stimulus, it is difficult to meet the requirements of application diversity. Herein, a type of multi-stimulus responsive soft actuator based on the Nafion-Polypropylene-polydimethylsiloxane (PDMS)/Graphite multilayer membranes is proposed. Such actuators have an excellent reversible response to optical/thermal and humidity stimulation, which can reach a 224.56° bending angle in a relative humidity of 95% within 5 s and a maximum bending angle of 324.65° in 31 s when the platform temperature is 80 °C, and has a faster response (<0.5 s) to optical stimuli, as an asymmetric structure allows it to bend in both directions. Based on such an actuator, some applications like flexible grippers and switches to carry items or control circuits, bionic flytraps to capture and release “prey”, have also been developed and studied. These provide potential applications in the fields of soft sensors, artificial skin and flexible robots.


2015 ◽  
Vol 744-746 ◽  
pp. 754-757
Author(s):  
Bo Gao ◽  
Min Wang ◽  
Zeng Heng Hao

In combination with the composite material technology, add the glass fiber grid into gussasphalt deck pavement system to form glass fiber grid reinforced gussasphalt. Analysis shows that adding the grid can increase the bending performance. Three point bending test was did to do verification and results were indicate that glass fiber grid can improve the anti-bending strength and anti-bending strain in high temperature.


Author(s):  
Anis Darmohammadi ◽  
Hamid Reza Naeimi ◽  
Mahdi Agheli

Soft robots are a specific type of robots that are made of elastomeric materials. A specific type of soft actuators (soft robots) are called fiber-reinforced soft actuators. Effective parameters in the motion of fiber-reinforced soft actuators are cross-section area, thickness of the actuator, number of threads wrapped around the actuator, angle of threads, and if the fiber is wrapped one-way or two-way. Some of these parameters are already studied by researchers in the field. In this research, the aim is to investigate the effect of the angle of the fiber on the motion of a semi-cylindrical fiber-reinforced soft actuator with an inextensible layer attached to its flat surface. This paper studies the behavior analysis of the actuator, which is modeled in a finite element software. The behavior of the actuator in terms of bending is then studied by changing the angle of the fiber wrapped around the outer surface of the actuator. Results show that the bending behavior of the actuator highly depends on the fiber angle. Simulation results are then validated with experiment. The results presented in this paper provides an instruction on how one can improve or optimize the bending workspace of the actuator as needed.


2018 ◽  
Vol 8 (8) ◽  
pp. 1284 ◽  
Author(s):  
Eun-Jae Shin ◽  
Won-Hyeong Park ◽  
Sang-Youn Kim

This paper proposes a small, transparent, electroactive and highly deformable poly vinyl chloride (PVC) gel-based bending actuator. The effect of the PVC molecular weight and plasticizer content on the performance of the bending actuator is investigated. Three PVCs are prepared with different molecular weights (low molecular weight: PVCL, 116,000; medium molecular weight: PVCM, 239,000; and high molecular weight: PVCH, 282,000) and mixed with plasticizers in various ratios to achieve the best performance of the bending actuator. Experiments are conducted to investigate the bending performance of the actuators based on the prepared PVC gels. Among the prepared actuators, the PVCH-based bending actuator shows the best performance (maximum bending angle: 180°, elapsed time: 3.15 s).


2019 ◽  
Vol 9 (2) ◽  
pp. 3981-3984
Author(s):  
E. Zurnaci ◽  
H. Gokkaya ◽  
M. Nalbant ◽  
G. Sur

Bending response of corrugated core metallic sandwich panels was studied experimentally under three-point bending loading. Two different core configurations were used: the corrugated monolithic core and the corrugated sliced core. The trapezoidal corrugated cores were manufactured from aluminum sheets via a sheet metal bending mould. After the sandwich panel samples were prepared, they were subjected to three-point bending tests. The load and displacement responses of the sandwich panels having different core configurations were obtained from the experimental testing. The influence of the core configuration on the three-point bending response and failure modes was then investigated. The experimental results revealed that the corrugated sliced core configuration exhibited an improved bending performance compared to the corrugated monolithic core configuration.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110267
Author(s):  
Jin Sun ◽  
Daozhou Zhang ◽  
Yang Zhang ◽  
Xinglong Zhu ◽  
Juntong Xi ◽  
...  

In order to improve the bearing capacity of soft actuators, this article presents the development of the rigid-hoop-reinforced (spring or steel hoop) multi-DOF soft actuator. The actuator is composed of a rotary module with spring reinforcement on the silicone rubber-based body and a bending module with steel hoop reinforcement on the body. Compared with fiber-reinforced actuators, the bearing capacities of rigid-hoop-reinforced actuators made of 65Mn spring steel are improved. The radial and the axial bearing capacity for the bending module and the rotary module is raised by 29.6%, 28.2%, 30.6%, 49.6% respectively; under the same pressure, the spring-reinforced interval increases the maximum rotary angle of the rotary module, the steel hoop-reinforced interval increases the maximum bending angle of the bending module; with the same reinforcement type, the bending module with reinforcement interval of 10 mm has good bending characteristics that the bending angle changes with the pressure gently; the lower the hardness of silicone rubber base body, the better the adaptability and flexibility of the actuator, and the higher the hardness, the greater the bearing capacity of the actuator. Due to the above advantages, the rigid-hoop-reinforced multi-DOF soft actuator can be applied to medical devices which need high load-carrying capacity.


Sign in / Sign up

Export Citation Format

Share Document