scholarly journals Analysis of Mechanical, Microstructural Properties and Weld Morphology of A-TIG Welded AH-36 Marine-Grade Steels with Oxide and Duplex Flux Coating

Author(s):  
Vijaya Kumar K. ◽  
N. Ramanaiah ◽  
N. Bhargava Rama Mohan Rao

The current study investigates the metallurgical, mechanical properties and weld morphology of AH36 marine grade steel (with a thickness of 8 mm) by activated-tungsten inert gas  (A-TIG) butt joints, with the application of different fluxes (MoO3, V2O5, and duplex of MoO3 and V2O5) at various process parameters. The welding speed was kept constant at 120 mm/min, and current varied from 160 A to 220 A uniformly to optimise process parameters to achieve desired mechanical properties, weld morphology, and lowest possible heat input. The study also focused on comparing tensile strength, impact strength, and microhardness, heat input during welding, weld bead depth and width between conventional TIG welding and activated flux TIG welding processes at various operation parameters. Tensile results reported that fracture occurs at the base region in ordinary TIG welding and the activated tungsten inert gas welding process. It was noticed that a higher depth to width ratio attained MoO3 and V2O5 duplex flux coated weldments. There is evidence that the depth of weld joints is enhanced because of stable arc, Marangoni effect, and arc constriction. Microhardness results reported that the fusion zone has a higher microhardness in the activated tungsten inert gas welding than the ordinary TIG welding. It was concluded that out of all fluxes, MoO3 and V2O5 duplex flux coating produce better butt welds of AH36 steel.

Author(s):  
Prasad Manorathna ◽  
Sundar Marimuthu ◽  
Laura Justham ◽  
Michael Jackson

Tungsten inert gas welding is extensively used in aerospace applications due to its unique ability to produce higher quality welds compared to other conventional arc welding processes. However, most tungsten inert gas welding is performed manually, and it has not achieved the required level of automation. This is mostly attributed to the lack of process knowledge and adaptability to complexities, such as mismatches due to part fit-up and thermal deformations associated with the tungsten inert gas welding process. This article presents a novel study on quantifying manual tungsten inert gas welding, which will ultimately help intelligent automation of tungsten inert gas welding. Through tungsten inert gas welding experimentation, the study identifies the key process variables, critical tasks and strategies adapted by manual welders. Controllability of welding process parameters and human actions in challenging welding situations were studied both qualitatively and quantitatively. Results show that welders with better process awareness can successfully adapt to variations in the geometry and the tungsten inert gas welding process variables. Critical decisions taken to achieve such adaptations are mostly based on visual observation of the weld pool. Results also reveal that skilled welders prioritise a small number of process parameters to simplify the dynamic nature of tungsten inert gas welding process so that part variation can be accommodated.


2012 ◽  
Vol 5 (1) ◽  
pp. 119-126 ◽  
Author(s):  
G. R. C. Pradeep ◽  
A. Ramesh ◽  
B. Durga Prasad

Hardfacing techniques are used for enhancing the life of various machine parts by rebuilding the worn out or eroded or corroded areas in them. In this paper, an attempt has been made to determine the better welding process to hardface AISI 1020 steel based on study of wear and other factors. Two types of welding processes - Arc welding and tungsten inert gas welding (TIG) have been compared. The study revealed that the specimens prepared using TIG welding process yielded better wear properties compared to the specimen prepared using Arc welding process till 1.256 m/s sliding velocity. Also it was observed that the Arc welding process yielded better wear properties for sliding velocities above 1.571 m/s. An attempt was made to study the reasons for getting the said results.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i1.11899        J. Sci. Res. 5 (1), 119-126 (2013) 


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
T. Sathish ◽  
S. Tharmalingam ◽  
V. Mohanavel ◽  
K. S. Ashraff Ali ◽  
Alagar Karthick ◽  
...  

Aluminium and its alloys play a significant role in engineering material applications due to its low weight ratio and superior corrosion resistance. The welding of aluminium alloy is challenging for the normal conventional arc welding processes. This research tries to resolve those issues by the Tungsten Inert Gas welding process. The TIG welding method is an easy, friendly process to perform welding. The widely applicable wrought aluminium AA8006 alloy, which was not considered for TIG welding in earlier studies, is considered in this investigation. For optimizing the number of experiments, the Taguchi experimental design of L9 orthogonal array type experimental design/plan was employed by considering major influencing process parameters like welding speed, base current, and peak current at three levels. The welded samples are included to investigate mechanical characterizations like surface hardness and strengths for standing tensile and impact loading. The results of the investigation on mechanical characterization of permanent joint of aluminium AA8006 alloy TIG welding were statistically analyzed and discussed. The 3D profilometric images of tensile-tested specimens were investigated, and they suggested optimized process parameters based on the result investigations.


Author(s):  
Meysam Akbari ◽  
Manouchehr Fadavi Ardestani ◽  
Hamid Bakhtiari ◽  
Zahra Bakhtiari

The 5083 aluminium alloy is one of the alloys of the 5xxx series that is widely used in defence and shipbuilding industries. In this study, the 5083 aluminium alloy plates were evaluated through two friction stir welding and tungsten inert gas welding (TIG) by a double groove weld with a 30° angle and a 2mm gap for TIG and a simple butt weld for FSW. In this study and in addition to examining the samples' mechanical properties, the microstructure changes and the hardness were also reviewed. The results show that the FSW weld has better mechanical properties than the TIG weld due to fast welding speed. However, by preparing the pieces, the mechanical properties of TIG get closer to those of FSW. In the FSW welding in the weld nugget, the grains have a fine and co-axial structure, and an increase in the advance rate will reduce the inlet heat and make the grains smaller. Nevertheless, in TIG welding at high speeds, the grains become more extensive with increased inlet heat.


Author(s):  
Sadaf Batool ◽  
Mushtaq Khan ◽  
Syed Husain Imran Jaffery ◽  
Ashfaq Khan ◽  
Aamir Mubashar ◽  
...  

This research work focuses on comparison of the weld geometry, distortion, microstructure and mechanical properties of thin SS 304 L sheets (0.8 mm thickness) welded using micro-plasma arc welding and tungsten inert gas welding process. Initial experiments were performed to identify suitable processing parameters for micro-plasma arc welding and tungsten inert gas welding processes. Microstructures of welds were analysed using scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The results indicate that the joint produced by micro-plasma arc welding exhibited higher tensile strength, higher ductility, smaller dendrite size and a narrow heat affected zone. Samples welded by micro-plasma arc welding process had lower distortion as compared to that welded by tungsten inert gas process. Micro-plasma arc welding was shown to be the suitable process for welding of thin 304 L sheets owing to its higher welding speed and better weld properties as compared to the tungsten inert gas welding process.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 981
Author(s):  
Jay Vora ◽  
Vivek K. Patel ◽  
Seshasai Srinivasan ◽  
Rakesh Chaudhari ◽  
Danil Yurievich Pimenov ◽  
...  

The Activated Tungsten Inert Gas welding (A-TIG) technique is characterized by its capability to impart enhanced penetration in single pass welding. Weld bead shape achieved by A-TIG welding has a major part in deciding the final quality of the weld. Various machining variables influence the weld bead shape and hence an optimum combination of machining variables is of utmost importance. The current study has reported the optimization of machining variables of A-TIG welding technique by integrating Response Surface Methodology (RSM) with an innovative Heat Transfer Search (HTS) optimization algorithm, particularly for attaining full penetration in 6 mm thick carbon steels. Welding current, length of the arc and torch travel speed were selected as input process parameters, whereas penetration depth, depth-to-width ratio, heat input and width of the heat-affected zone were considered as output variables for the investigations. Using the experimental data, statistical models were generated for the response characteristics. Four different case studies, simulating the real-time fabrication problem, were considered and the optimization was carried out using HTS. Validation tests were also carried out for these case studies and 3D surface plots were generated to confirm the effectiveness of the HTS algorithm. It was found that the HTS algorithm effectively optimized the process parameters and negligible errors were observed when predicted and experimental values compared. HTS algorithm is a parameter-less optimization technique and hence it is easy to implement with higher effectiveness.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 404 ◽  
Author(s):  
Kamel Touileb ◽  
Abousoufiane Ouis ◽  
Rachid Djoudjou ◽  
Abdeljlil Chihaoui Hedhibi ◽  
Hussein Alrobei ◽  
...  

Flux activated tungsten inert gas (ATIG) welding is a variant of tungsten inert gas (TIG) welding process with high production efficiency, high quality, low energy consumption, and low cost. The study of activating flux mechanism by increasing weld penetration has direct significance in developing flux and welding process. This study has been conducted on 430 ferritic stainless steel alloy. Design of experiment is used to get the best formulation of flux. Based on Minitab17 software, nineteen compositions of flux were prepared using the mixing method. Fluxes are combinations of three oxides (MoO3-TiO2-SiO2). Using the optimizer module available in Minitab 17 software, the best formulation was obtained to achieve the best weld depth. Hence, the obtained depth is twice greater than that achieved by conventional TIG welding. Moreover, mechanical properties and corrosion resistance have been investigated for TIG and ATIG welds respectively in tensile, impact, and hardness tests, and in potentiodynamic polarization measurement test.


2018 ◽  
Vol 8 (2) ◽  
pp. 5271-5274

GTAW well known as tungsten inert gas welding (TIG) commonly used to join thin sections of nonferrous metals like magnesium, copper and aluminium alloys. Allowing for stronger, higher quality welds the welding operator need great control on welding process. Because of short arc length, contact gap of filler electrode have to be maintain in a even way to maintain equal speed and depositing methods. Present work focuses on the TIG welding process and microstructure analysis of flaws in welding; also evaluate the mechanical properties of welded joints. The samples prepared as per ASTM weld samples, the extracted samples tested for microstructure, penetration and other mechanical tests. The results are showing good at the area of weld.


2007 ◽  
Vol 537-538 ◽  
pp. 63-70 ◽  
Author(s):  
Tamás Sándor ◽  
János Dobránszky

The TIG welding has a high disadvantage against the substantially high productivity welding procedures. This is why there were continuously going on several trials to improve the productivity of the TIG welding. The Activated Tungsten Inert Gas welding (ATIG welding) is one of these trials. Application experiments of ATIG welding on austenitic stainless steel plates will be presented. The main problems which appear when using the ATIG welding are the choosing of tungsten electrode, the suggested fitting of parts for the joining, portioning of the activating flux and the sensitivity for the measure of flux. They are extremely important to apply the ATIG welding and the results will be presented by this work. In the second half of this paper the comparison of the productivity differences between TIG and ATIG welding; mechanical properties, microstructure and corrosion resistance of welded joints will continue. Finally the evaluating the results and trying to classify the ATIG welding amongst the modern and most productive welding procedures is detailed. Furthermore advises for using the ATIG welding for suitable applications are represented.


Sign in / Sign up

Export Citation Format

Share Document