scholarly journals Drag reduction by combination of flow control using inlet disturbance body and plasma actuator on cylinder model

2019 ◽  
Vol 13 (1) ◽  
pp. 4503-4511
Author(s):  
Budiarso . ◽  
Harinaldi . ◽  
E. A. Kosasih ◽  
R. F. Karim ◽  
J. Julian

Flow past a cylinder is one of the things that is very applicable in everyday life. But behind those facts, there is a problem in it namely the drag force which is adverse and needs to be reduced. This research was conducted to find solutions to reduce drag by using a mix of passive flow control of inlet disturbance body and active flow control from plasma actuators. This research uses a test model in the form of a cylinder of a diameter of 120 mm with Reynolds Number 15000, 41000, 62000 and was expected to reduce drag after a given combination of flow control. From the results shown, either inlet disturbance of body and plasma actuators as well as a combination of both the flow of control is capable of performing the reduction coefficient of drag up to 70,22% on a variation of the Reynolds Number 62000.

Author(s):  
Nagendra Karthik Depuru Mohan ◽  
David Greenblatt ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit ◽  
Panchapakesan Nagangudy Ramamurthi

An experimental investigation was carried out to compare active and passive flow control of an incompressible axisymmetric jet. For active flow control, the lip of the circular jet was equipped with a single small flap deflected away from the jet stream at an angle of 30°. The flap incorporated a flow control slot through which steady suction and oscillatory suction were implemented. For passive flow control, the lip of the circular jet was equipped with a single small triangular tab deflected into the jet stream at an angle of 30°. Both the flap and triangular tab chord lengths were one sixth of the jet diameter. The momentum of jet increased in the case of active flow control by entraining ambient fluid, whereas momentum decreased in the case of passive flow control. The effect of steady suction saturated for volumetric suction coefficient values greater than approximately 0.82%. The strength of the streamwise vortices generated by active flow control flaps were greater than those generated by the passive triangular tab. Steady suction produced positive pressures just downstream of the flow control slot in the central portion of the flap and negative pressures at the flap edges. Oscillatory suction was highly dependent on dimensionless frequency (F+) based on flap-length; the pressures on the central portion of the flap increased for F+≤0.11 and then decreased for greater F+; finally attaining negative pressures at F+ = 0.44. The increase in jet momentum, combined with the generation of strong streamwise vortices makes a strong case for improvements in propulsion efficiency and jet noise reduction.


Author(s):  
Vaibhav Kumar ◽  
Nandeesh Hiremath ◽  
Dhwanil Shukla ◽  
Nikolaus Thorrell ◽  
Narayanan Komerath

The interaction of a rotating conical flow with a solid surface generates a centrifugal instability. This occurs in the flow over the wings of certain types of aircraft at high angles of attack. Efforts at our laboratory have detected such structures using near-surface flow diagnostics, and shown that they can be effectively alleviated using passive flow control near the surface. Their alleviation removes the narrowband spectral peak at the nominal location of vertical fins on these aircraft. This paper explores the substitution of active flow control techniques that remain conformal to the surface and are only powered during high angle of attack operation. The occurrence of the phenomenon and its 15-dB alleviation with geometric fences are shown on a rounded-edge 42-degree swept, cropped delta wing at 25 degrees angle of attack. The feasibility and power requirements for the plasma actuator are estimated in this paper. The generation of counter-rotating vortices using a double dielectric barrier discharge actuator is demonstrated.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Charalampos Papadopoulos ◽  
Dimitrios Mitridis ◽  
Kyros Yakinthos

In this study, the conceptual design of an unmanned ground effect vehicle (UGEV), based on in-house analytical tools and CFD calculations, followed by flow control studies, is presented. Ground effect vehicles can operate, in a more efficient way, over calm closed seas, taking advantage of the aerodynamic interaction between the ground and the vehicle. The proposed UGEV features a useful payload capacity of 300 kg and a maximum range of 300 km cruising at 100 kt. Regarding the aerodynamic layout, a platform which combines the basic geometry characteristics of the blended wing body (BWB), and box wing (BXW) configurations is introduced. This hybrid layout aims to incorporate the most promising features from both configurations, while it enables the UGEV to operate under adverse flight conditions of the atmospheric boundary layer of the earth. In order to enhance the performance characteristics of the platform, both passive and active flow control techniques are studied and incorporated into the conceptual design phase of the vehicle. For the passive flow control techniques, the adaptation of tubercles and wing fences is evaluated. Regarding the active flow control techniques, a wide range of morphing technologies is investigated based on performance and integration criteria. Finally, stability studies are conducted for the proposed platform.


2021 ◽  
Author(s):  
F. F. Rodrigues ◽  
J. Nunes-Pereira ◽  
M. Abdollahzadeh ◽  
J. Pascoa ◽  
S. Lanceros-Mendez

Abstract Dielectric Barrier Discharge (DBD) plasma actuators are simple devices with great potential for active flow control applications. Further, it has been recently proven their ability for applications in the area of heat transfer, such as film cooling of turbine blades or ice removal. The dielectric material used in the fabrication of these devices is essential in determining the device performance. However, the variety of dielectric materials studied in the literature is very limited and the majority of the authors only use Kapton, Teflon, Macor ceramic or poly(methyl methacrylate) (PMMA). Furthermore, several authors reported difficulties in the durability of the dielectric layer when the actuators operate at high voltage and frequency. Also, it has been reported that, after long operation time, the dielectric layer suffers degradation due to its exposure to plasma discharge, degradation that may lead to the failure of the device. Considering the need of durable and robust actuators, as well as the need of higher flow control efficiencies, it is highly important to develop new dielectric materials which may be used for plasma actuator fabrication. In this context, the present study reports on the experimental testing of dielectric materials which can be used for DBD plasma actuators fabrication. Plasma actuators fabricated of poly(vinylidene fluoride) (PVDF) and polystyrene (PS) have been fabricated and evaluated. Although these dielectric materials are not commonly used as dielectric layer of plasma actuators, their interesting electrical and dielectric properties and the possibility of being used as sensors, indicate their suitability as potential alternatives to the standard used materials. The plasma actuators produced with these nonstandard dielectric materials were analyzed in terms of electrical characteristics, generated flow velocity and mechanical efficiency, and the obtained results were compared with a standard actuator made of Kapton. An innovative calorimetric method was implemented in order to estimate the thermal power transferred by these devices to an adjacent flow. These results allowed to discuss the ability of these new dielectric materials not only for flow control applications but also for heat transfer applications.


Author(s):  
Ehsan Asgari ◽  
Mehran Tadjfar

In this study, we have applied and compared two active flow control (AFC) mechanisms on a pitching NACA0012 airfoil at Reynolds number of 1 × 106 using 2-D computational fluid dynamics (CFD). These mechanisms are continuous blowing and suction which are applied separately on the airfoil which pitches around its quarter-chord in a sinusoidal motion. The location for suction and blowing was determined in our previous study based on the formation of a counter clock-wise vortex near the leading-edge. In our current study, we have compared the effectiveness of pure blowing and pure suction in suppressing the dynamic stall vortex (DSV) which is the main contributor to the drag increase, particularly near the maximum angle of attack (AOA) and in early downstroke motion. The blowing/suction slot is considered as a dent on the airfoil surface which enables the AFC to perform in a tangential manner. This configuration would allow blowing jet to penetrate further downstream and was shown to be more effective compared to a cross-flow orientation. We have compared the two aforementioned mechanisms in terms of hysteresis loops of lift and drag coefficients and have demonstrated the dynamics of flow in controlled and uncontrolled situations.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Mehran Tadjfar ◽  
Ehsan Asgari

We have studied the influence of a tangential blowing jet in dynamic stall of a NACA0012 airfoil at Reynolds number of 1 × 106, for active flow control (AFC) purposes. The airfoil was oscillating between angles of attack (AOA) of 5 and 25 deg about its quarter-chord with a sinusoidal motion. We have utilized computational fluid dynamics to investigate the impact of jet location and jet velocity ratio on the aerodynamic coefficients. We have placed the jet location upstream of the counter-clockwise (CCW) vortex which was formed during the upstroke motion near the leading-edge; we have also considered several other locations nearby to perform sensitivity analysis. Our results showed that placing the jet slot within a very small range upstream of the CCW vortex had tremendous effects on both lift and drag, such that maximum drag was reduced by 80%. There was another unique observation: placing the jet at separation point led to an inverse behavior of drag hysteresis curve in upstroke and downstroke motions. Drag in downstroke motion was significantly lower than upstroke motion, whereas in uncontrolled case the converse was true. Lift was significantly enhanced during both upstroke and downstroke motions. By investigating the pressure coefficients, it was found that flow control had altered the distribution of pressure over the airfoil upper surface. It caused a reduction in pressure difference between upper and lower surfaces in the rear part, while substantially increased pressure difference in the front part of the airfoil.


Author(s):  
T Rajesh Senthil Kumar ◽  
Mohini Priya Kolluri ◽  
V R Gopal Subramaniyan ◽  
A D Sripathi

Author(s):  
R Bardera-Mora ◽  
A Conesa ◽  
I Lozano

This experimental investigation presents a new active flow control technique based on plasma actuators applied to a backward facing step whose structure is similar to that formed by the hangar and flight deck of small naval vessels. These experiments were carried out by testing a simple frigate shape model settled at 0° wind over deck in a low-speed wind tunnel. Two different configurations of dielectric barrier discharge plasma actuator have been used to modify the flow downstream of the step. Results obtained investigating the flow by particle image velocimetry prove the capacity of plasma actuators by reducing instabilities and turbulence over the simple frigate shape model.


Author(s):  
Michael Thake ◽  
Nathan Packard ◽  
Carlos Bonilla ◽  
Jeffrey Bons

Sign in / Sign up

Export Citation Format

Share Document