scholarly journals High mixing performances of shear-thinning fluids in two-layer crossing channels micromixer at very low Reynolds numbers

2019 ◽  
Vol 13 (4) ◽  
pp. 5938-5960
Author(s):  
A. Kouadri ◽  
Y. Lasbet ◽  
M. Makhlouf

In a recent study, the Two-Layer Crossing Channels Micromixer (TLCCM) exhibited good mixing capacities in the case of the Newtonian fluids (close to 100%) for all considered Reynolds number values. However, since the majority of the used fluids in the industrial sectors are non-Newtonians, this work details the mixing evolution of power-law fluids in the considered geometry. In this paper, the power-law index ranges from 0.73 to 1 and the generalized Reynolds number is bounded between 0.1 and 50. The conservation equations of momentum, mass and species transport are numerically solved using a CFD code, considering the species transport model. The flow structure at the cross-sectional planes of our micromixer was studied using the dynamic systems theory. The evolutions of the intensity, also the axial, radial and tangential velocity profiles were examined for different values of the Reynolds number and the power-law index. Besides, the pressure drop of the power-law fluids under different Reynolds number was calculated and represented. Furthermore, the mixing efficiency is evaluated by the computation of the mixing index (MI), based on the standard deviation of the mass fraction in different cross-sections. In such geometry, a perfect mixing is achieved with MI closed to 99.47 %, at very small Reynolds number (from the value 0.1) whatever the power-law index and generalized Reynolds numbers taken in this investigation. Consequently, the targeted channel presents a useful tool for pertinent mass transfer improvements, it is highly recommended to include it in various microfluidic systems.

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Sergio L. D. Kfuri ◽  
Edson J. Soares ◽  
Roney L. Thompson ◽  
Renato N. Siqueira

Industrial processes with non-Newtonian fluids are common in many segments such as petroleum, cosmetic, and food industries. Slurries, emulsions, and gas–liquid dispersions are some examples with industrial relevance. When a fluid flows in a pipe system, pressure losses are always present. For Newtonian fluids, a quite reasonable understanding of this phenomenon was already achieved and is available in the literature. The same cannot be stated for non-Newtonian fluids owing to their complex characteristics, such as pseudoplasticity, viscoplasticity, elasticity, and thixotropy. The understanding of the influence of these characteristics on flow behavior is very important in order to design efficient pipeline systems. The design of such systems requires the estimation of the pressure drop due to friction effects. However, there are few works regarding friction losses for non-Newtonian fluids in pipeline systems, making this task a difficult one. In this study, two classes of fluids are investigated and compared with the Newtonian results. The first category of fluids are the ones that exhibits pseudoplastic behavior and can be modeled as a power-law fluid, and the second category are the ones that possesses a yield stress and can be modeled as a Bingham fluid. Polyflow was used to compute the friction losses in both abrupt contractions and expansions laminar flow conditions. It shows that for the expansion cases, the aspect ratio affects more the local friction coefficients than for the contraction cases. The influence of the power index n on local friction losses is similar for both cases, abrupt contractions and abrupt expansions. At low Reynolds numbers, dilatant fluids present the lowest values of the friction coefficient, K, independent of geometry. At high Reynolds numbers, a reversal of the curves occurs, and the dilatant fluid presents larger values of K coefficient. For the cases investigated, there is also a Reynolds number in which all the curves exhibit the same value of K for any value of the power-law index. The effect of τy′ shows a different behavior between contractions and expansions. In the case of contractions, the material with the highest dimensionless yield stress has the highest K value. In the case of the expansions, the behavior is the opposite, i.e., the higher the yield stress, the lower is the values of the K coefficient. Equations for each accessory as a function of the rheological parameters of the fluid and the Reynolds number of the flow are also proposed. The data were adjusted according to two main equations: the two Ks method proposed by Hooper (1981, “The Two-K Method Predicts Head Losses in Pipe Fittings,” Chem. Eng., 81, pp. 96–100.) is used for all the contractions cases, and the equation proposed by Oliveira et al. (1997, “A General Correlation for the Local Coefficient in Newtonian Axisymmetric Sudden Expansions,” Int. J. Heat Fluid Flow, 19(6), pp. 655–660.) is used for all the expansions cases. The equations found were compared with the numerical results and showed satisfactory precision and thus can be used for engineering applications.


2006 ◽  
Vol 129 (4) ◽  
pp. 506-513 ◽  
Author(s):  
A. K. Dhiman ◽  
N. Anjaiah ◽  
R. P. Chhabra ◽  
V. Eswaran

Steady laminar mixed convection flow and heat transfer to Newtonian and power-law fluids from a heated square cylinder has been analyzed numerically. The full momentum and energy equations along with the Boussinesq approximation to simulate the buoyancy effects have been solved. A semi-explicit finite volume method with nonuniform grid has been used for the range of conditions as: Reynolds number 1–30, power-law index: 0.8–1.5, Prandtl number 0.7–100 (Pe⩽3000) for Richardson number 0–0.5 in an unbounded configuration. The drag coefficient and the Nusselt number have been reported for a range of values of the Reynolds number, Prandtl number, and Richardson number for Newtonian, shear-thickening (n>1) and shear-thinning (n<1) fluids. In addition, detailed streamline and isotherm contours are also presented to show the complex flow field, especially in the rear of the cylinder. The effects of Prandtl number and of power-law index on the Nusselt number are found to be more pronounced than that of buoyancy parameter (Ri⩽0.5) for a fixed Reynolds number in the steady cross-flow regime (Re⩽30).


Author(s):  
Akhilesh K. Sahu ◽  
Raj P. Chhabra ◽  
V. Eswaran

The two-dimensional and unsteady flow of power-law fluids past a long square cylinder has been investigated numerically in the range of conditions 60 ≤ Re ≤ 160 and 0.5 ≤ n ≤ 2.0. Over this range of Reynolds numbers, the flow is periodic in time for Newtonian fluids. However, no such information is available for power law fluids. A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. The macroscopic quantities such as drag coefficients, Strouhal number, lift coefficient as well as the detailed kinematic variables like stream function, vorticity and so on, have been calculated as functions of the pertinent dimension-less groups. In particular, the effects of Reynolds number and of the power-law index have been investigated in the unsteady laminar flow regime. The leading edge separation in shear-thinning fluids produces an increase in drag values with the increasing Reynolds number, while shear-thickening behaviour delays the leading edge separation. So, the drag coefficient in the above-mentioned range of Reynolds number, Re, in shear-thinning fluids (n &lt; 1) initially decreases but at high values of the Reynolds number, it increases. As expected, on the other hand, in case of shear-thickening fluids (n &gt; 1) drag coefficient reduces with Reynolds number, Re. Furthermore, the present results also suggest the transition from steady to unsteady flow conditions to occur at lower Reynolds numbers in shear-thickening fluids than that in Newtonian fluids. Also, the spectra of lift signal for shear-thickening fluids show that the flow is truly periodic in nature with a single dominant frequency in the above range of Reynolds number. In shear-thinning fluids at higher Re, quasi-periodicity sets in with additional frequencies, which indicate the transition from the 2-D to 3-D flows.


Author(s):  
Pooja Thakur ◽  
Naveen Tiwari ◽  
Raj P. Chhabra

Abstract In this study, a rotating cylinder is placed in a stream of shear-thinning fluids, flowing with an uniform velocity. Detailed investigations are performed for the following range of conditions: Reynolds number 100 ? Re ? 500, power-law index 0.2 ? n ? 1 and rotational velocity 0 ? ? ? 5. Flow transitions are observed from steady to unsteady at critical values of the Reynolds number, the rotational velocity, and the power-law index. Critical values of the Reynolds number Re^c have been obtained for varying levels of the rotational velocity, and the power-law index. Re^c varies non-monotonically with the rotational velocity. At a particular Reynolds number, an increase of the rotational velocity acts as a vortex suppression technique. For shear-thinning ?uids considered here, the vortex suppression occurs at a larger value of the critical rotational velocity ?^c, relative to Newtonian ?uids. For the unsteady ?ow, lift coef?cient versus time curve exhibits oscillatory behavior, and this has been used to delineate the ?ow regime as steady or unsteady ?ow. For unsteady ?ow regimes, both the amplitude of the lift coef?cient and the Strouhal number increase with increasing Reynolds numbers. The results presented in this work for such high Reynolds numbers elucidate the possible complex interplay between the kinematic and rheological parameters of non-Newtonian ?uids. This investigation also complements the currently available low Reynolds number results up to ? Re = 140.


Author(s):  
Kai Feng ◽  
Huichen Zhang

The vortex in the branching microchannel enhances the mixing and heat transfer performance. To investigate the vortex intensity quantitatively, a lattice Boltzmann model for incompressible power-law fluid is developed by setting the range of lattice viscosity (0.001 [Formula: see text] 1). The validation of the current model is carried out by modeling the vortex in a T-shaped branching channel and the Poiseuille flow of power-law fluids. Then the vortex intensity in the [Formula: see text]-shaped microchannel is numerically studied in terms of Reynolds number, branching angle and power-law index. The result indicates that both the recirculation length and height increase with the increase of the Reynolds number. The branching angle has a negative impact on the recirculation length, and it has little effect on the recirculation height. The influence of the power-law index on recirculation length and height depends on the Reynolds number.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Abbas H. Sulaymon ◽  
Catherine A. M. E. Wilson ◽  
Abeer I. Alwared

The virtual mass coefficient is determined experimentally for the motion of two spheres side by side and in line in a power law fluid. The velocities of the two accelerating spheres and their separation distance was measured as they accelerated under the action of driving weights through a cylindrical column filled with different concentrations of polyacryamaide solution (0.01%, 0.03%, 0.05%, and 0.07% by weight). For comparison purposes, the experiments were repeated with water. Various densities of spheres and separation distances were examined. Within the range of power law indices (0.61–0.834) and Reynolds numbers (1.1–75) examined, the virtual mass coefficient was found to decrease with an increasing Reynolds number for the two spheres moving side by side, and found to be greater than 0.5 when the spheres were touching each other. As the distance between the spheres increased, the virtual mass coefficient was found to decrease and approached the single sphere value of 0.5 when the distance between the spheres was more than ten radii. When the spheres were in line and touching each other, the virtual mass coefficient was found to be less than 0.5, however, when the distance between the spheres increased, the virtual mass coefficient increased and approached the value of 0.5. The virtual mass coefficient was found to be consistent with the shear thinning behavior; for a given Reynolds number, it increased with an increasing power law index.


Author(s):  
M. S. Yun ◽  
B. P. Huynh

Non-isothermal peristaltic flow of power-law fluids in a circular tube is investigated numerically, using a commercial Computational Fluid Dynamics (CFD) software package that employs the Finite Volume Method. Simulation is performed over the range of Reynolds-number values from 1 to 100. Temperature effect on the flow field is via fluid viscosity, which is assumed to decrease exponentially with temperature. Also, except for viscosity, other fluid properties are assumed to be constant, and are similar to those of an oil. Over a range of the power-law index covering fluid behaviour from shear-thinning, through Newtonian, to shear-thickening, it is found that allowing for temperature effects has significantly altered the flow pattern and pressure variation, even when the corresponding changes in temperature itself are small. Around the crest region, recirculation appears in non-isothermal flow at all power-law-index and Reynolds-number values considered in this work, in contrast to isothermal situations.


2016 ◽  
Vol 62 ◽  
pp. 118-123 ◽  
Author(s):  
J. Málek ◽  
K.R. Rajagopal ◽  
J. Žabenský

Sign in / Sign up

Export Citation Format

Share Document