scholarly journals Pyrolysis of Coconut Coir and Shell as Alternative Energy Source

2018 ◽  
Vol 7 (2) ◽  
pp. 115-120
Author(s):  
Khalimatus Sa'diyah ◽  
Fatchur Rohman ◽  
Winda Harsanti ◽  
Ivan Nugraha ◽  
Nur Ahmad Febrianto

Biomass waste can be used as raw material for bio-oil manufacture. One of the biomass is coconut coir and shell waste, commonly used as a substitute for firewood and handicraft materials. Therefore it takes effort to use coconut coir and shell to increase its economic value. One of the waste processing efforts is through pyrolysis process. Pyrolysis is the heating process of a substance in the absence of oxygen and produces products of solids, liquids and gases. The product of pyrolysis liquid is called bio-oil which can be used as alternative energy source. In this study, coconut coir and shell was pyrolysed as bio-oil. It also studied pyrolysis operating temperature and the amount of yield of bio-oil produced. The pyrolysis process was carried out in a reactor with a pressure of 1 atm and a varying operating temperature of 150 °C, 200 °C and 250 °C for 60 minutes. The reactor was equipped with a condenser as a cooling column. The mass of raw materials used was 500 grams with a size of 0.63 mm. The results of the research show that the higher the temperature, the more volume of bio-oil produced. For coconut coir pyrolysis it was obtained the highest yield of 34.2%, with density of 1.001 g/ml and viscosity of 1.351 cSt. As for coconut shell pyrolysis it was obtained highest yield of 45,2% with density of 1,212 g/ml and viscosity of 1.457 cSt. From the result of analysis using FTIR, the functional group of bio-oil was the most compound of phenol and alkene.

2021 ◽  
Vol 1034 ◽  
pp. 199-205
Author(s):  
Dewi Selvia Fardhyanti ◽  
Megawati ◽  
Haniif Prasetiawan ◽  
Noniek Nabuasa ◽  
Mohammad Arik Ardianta

Biomass is a source of alternative energy that is environmentally friendly and very promising as one of the sources of renewable energy at present. The best candidate for the biomass waste for pyrolysis raw material is sugarcane bagasse. The sugarcane bagasse is a fibrous residue that is produced after crushing sugarcane for its extraction. Sugarcane bagasse is very potential to produce bio-oil through a pyrolysis process. The advantage of utilizing sugarcane bagasse is to reduce the amount of waste volume. Pyrolysis is a simple thermochemical conversion that transforms biomass with the near absence of absence of oxygen to produce fuel. Experiments were carried out on the fixed bed reactor. The analysis was carried out over a temperature range of 300-500 °C under atmospheric conditions. Products that are usually obtained from the pyrolysis process are bio-oil, char, and gas. Product analysis was performed using Gas Chromatography (GC) and Mass Spectrometry (MS) analysis. This research is aimed to study the kinetics of the sugarcane bagasse pyrolysis process to produce bio-oil. Three different models were proposed for the kinetic study and it was found that model III gave the best prediction on the calculation of pyrolysis process. From the calculation results, kinetic parameters which include activation energy (Ea) and the k factor (A) at a temperature of 300 °C is 2.4730 kJ/mol and 0.000335 s-1, at a temperature of 400 °C is 3, 2718 kJ/mol and 0.000563 s-1, and at a temperature of 500 °C is 4.8942 kJ/mol and 0.0009 s-1.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Abdul Ghofur ◽  
Aqli Mursadin

Berdasarkan ketersediaan sumber daya gambut yang besar di Provinsi Kalimantan Selatan, maka peluang untuk memanfaatkan potensi tanah gambut sebagai sumber energi alternatif sangat besar. Sumber energi yang didapat dari minyak, gas bumi, dan batubara sedikit demi sedikit berkurang, sehingga perlu dicarikan sumber energi alternatif. Peneliti Lahan Gambut dari Balai Penelitian Tanaman Rawa Pertanian (Balittra) Banjarbaru, Dr Muhammad Noor dalam berita Banjarmasin post tanggal 24 Nopember 2005 tentang “PLN Melirik Lahan Gambut”  menjelaskan, dalam gambut memang terdapat energi yang dapat membangkitkan tenaga listrik, energi yang terdapat dalam gambut cukup tinggi yakni sekitar 5.000 kilo kalori per kilogram. Di Kalsel, keberadaannya setara dengan 65 miliar barel minyak bumi atau sebesar 10 juta barel per tahun energi yang dihasilkan.  Berdasarkan latar belakang tersebut beberapa perumusan masalah  dalam penelitian ini adalah bagaimana usaha untuk melakukan tanah gambut untuk menjadi sumber energi alternatif  yang berkualitas dan  mudah digunakan,  bagimana karateristik tanah gambut sebagai sumber energi alternatif. Salah  satu  cara  untuk mengoptimalkan potensi gambut adalah memanfaatkannya sebagai bahan baku dalam pembuatan briket yang dapat dijadikan sebagai bahan bakar altematif  .  Tujuan dari penelitian ini adalah a) memanfaatkan ketersediaan sumber daya alam dengan menggunakan tanah gambut sebagai energi alternatif  dan b ) mengetahui Nilai kalori, berat jenis, kadar air dan kadar abu di wilayah studi. Tanah gambut yang digunakan sebagai  bahan baku untuk energi alternatif  berasal  dari Desa Gambut Kabupaten Banjar.  Prosedur pelaksanaan penelitian dilakukan terhadap karateristik tanah  gambut diwilayah studi  sebagai sumber energi. Dari hasil penelitian ini menunjukan bahwa untuk tanah gambut di Desa Gambut Kec. Gambut bisa   untuk digunakan sebagai bahan bakar alternatif dengan  teknologi pembriketan. Dengan nilai Kadar Air  0,10%, Kadar Abu 72,65%, berat jenis 2,11 Gs dengan nilai kalori 579,2 cal/g bisa digunakan sebagai bahan  bakar alternatif. Key word : energi alternatif, nilai kalori, tanah gambut. Based on the availability of large peat resources in the province of South Kalimantan, the opportunity to utilize the potential of peat soil as an alternative energy source is very large. Energy sources derived from oil, natural gas, and coal gradually diminish, so alternative energy sources are needed. Peatland Researchers from the Agricultural Swamp Research Institute (Balittra) Banjarbaru, Dr. Muhammad Noor in the Banjarmasin post on November 24, 2005 on "PLN Looking at Peatlands" explained that in peat there is indeed energy that can generate electricity, energy contained in peat quite high at around 5,000 kilos of calories per kilogram. In South Kalimantan, its existence is equivalent to 65 billion barrels of oil or 10 million barrels per year of energy produced. Based on this background, several formulations of the problem in this study are how to make peat soils to be a quality alternative energy source that is easy to use, how the characteristics of peat soil as an alternative energy source. One way to optimize the potential of peat is to use it as a raw material in making briquettes that can be used as alternative fuels. The purpose of this study is a) utilizing the availability of natural resources by using peat soil as alternative energy and b) knowing the calorific value, specific gravity, moisture content and ash content in the study area. Peat soil used as raw material for alternative energy comes from the Gambut Village of Banjar Regency. The procedure for conducting research was carried out on the characteristics of peat soil in the study area as an energy source. From the results of this study indicate that for peat soil in the village of Gambut Kec. Peat can be used as an alternative fuel with briquette technology. With a value of 0.10% moisture content, ash content 72.65%, specific gravity of 2.11 Gs with a calorific value of 579.2 cal / g can be used as an alternative fuel. Key word: alternative energy, calorific value, peat soil.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Rany Puspita Dewi

The increasing consumption of fossil-based energy especially LPG (Liquid Petroleum Gas) that is not balanced with the availability of energy source, required a development of alternative energy with abundant amount and environmentally friendly. One of alternative energy source feasible to develop is the one from biomass waste that is livestock manure. Magelang becomes one of potential area in Central Jawa as biogas development. Biogas is produced by using digester anaerobically. Magelang has livestock about 142.127 with potency of gas production about 86.690 m3. The resulted biogas production equals to 43.345 kg of LPG or 14.448 of LPG 3 kg which is can fullfill the cooking needs for about 278 households in one year.


2019 ◽  
Vol 3 (1) ◽  
pp. 29
Author(s):  
Ucik Ika Fenti Styana ◽  
Rosiana Indrawati ◽  
Muhammad Sigit Cahyono

<p class="Default"><em>One of the abundant energy source in Indonesia is organic waste in the form of leafs and branches which is widely avalilable in homeyard. It can be utilized as alternative energy source by gasification process. The objective of the study was to know the influence of raw material and AFR to the characteristic of organic waste gasification process. The raw material used were leafs and branches of melinjo (gnetum gnemon) which obtained from homeyard of inhabitant in Sidomoyo village, Godean sub-district, Sleman Regency, Indonesia. Before being gasified, it was prepared for proximate analysis in laboratorium. The gasification begins by feeding the raw material to the reactor with variation of 100% leaf, 100% branch, and 50%-50% leaf and branch. The gasification process was occured in reactor for one hour, and syn gas which produced has been analized to know the composition of it. Result shows that raw material have influenced the characteristic of gasification process. The highest heating rate was occured for gasification process of 100% leaf and AFR 0.5, which it gas has burned after 25 minuted process in oxidation temperature of 650 <sup>0</sup>C, reduction temperature of 350 <sup>0</sup>C, and pyrolysis temperature of 240 <sup>0</sup>C.</em></p>


Author(s):  
Valentin VLĂDUŢ ◽  
Mihai CHIŢOIU ◽  
Aurel DANCIU ◽  
Mirela MILITARU ◽  
Carol LEHR

Renewable energy represents a major interest field in the sustainable development of the energies reserve. Agri-pellets are an efficient version of the average pellet, both in reducing greenhouse gas emissions and in reducing energy costs. Agri-pellets are obtained through mixtures of vegetal and forestry waste, being an alternative to the usual pellets because the material that is used in the process can be easily found, especially in the case of farms. Agricultural and forestry biomass represent the raw material for pellets and agri-pellets processing, a product that is used as an alternative energy source to classic versions (wood). The mixtures humidity is very important because it has a major impact on product quality. Determining the ideal humidity for each type of pellets/agri-pellets is important in order to establish optimal mixtures, this paper presenting research results on determining the humidity influence on pellet and agri-pellet recipes.


2018 ◽  
Vol 4 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Olena Savchenko ◽  
◽  
Vasyl Zhelykh ◽  
Yurii Yurkevych ◽  
Khrystyna Kozak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document