EFFECTS OF AN ANABOLIC STEROID ON FATIGUE AND COMPLIANCE OF DENERVATED GASTROCNEMIUS

1964 ◽  
Vol 46 (3) ◽  
pp. 331-335 ◽  
Author(s):  
F. Paleček ◽  
A. Boučková

ABSTRACT Maximal tetanic tension, fatigue after repeated tetani, and compliance were followed in vitro in normal and denervated rat gastrocnemii. Half the number of rats were pretreated with an anabolic steroid, 1α,17α-dimethylandrostan-17β-ol-3-one (DMA). The effects on muscle weight and maximal tetanic tension were insignificant in normal and in denervated muscles. In denervated muscles with DMA fatigue occurred more slowly than in muscles without DMA, and in the whole group of denervated muscles the fatigue was less than in the innervated controls. Differences were also observed in muscle compliance.

1976 ◽  
Vol 156 (1) ◽  
pp. 71-80 ◽  
Author(s):  
D F Goldspink

The effects of denervation on muscle weight, rates of protein synthesis and breakdown, and RNA concentraitons were studied in the soleus and extensor digitorum longus muscle. Althrough the soleus underwent a true atrophy after section of the sciatic nerve, the extensor digitorum longus continued to grow, albeit at a lower rate than innervated controls. At 24h after nerve section protein breakdown was increased in both muscle types when compared with internal controls, and remained so throughout the 10 days studied. The possibility that this increased catabolism might arise from conformational changes of proteins after denervation was not substantiated, as myofibrillar or soluble proteins of denervated and control tissues were equally susceptible to degradation in vitro by three proteinases. Tyrosine uptake into the denervated extensor digitorum longus was decreased throughout the 10 days studied, whereas two phases of increased transport of the amino acid were found in the soleus. Significant decreases in rates of protein synthesis were found 1 and 2 days after denervation and results are presented that suggest that these changes may result from a decrease in ribosomal involvement in the translation process. These initial decreases were not maintained and the rate of protein synthesis was in fact increased when compared with controls, at 7 and 10 days. The increased synthetic rates of the 7-day denervated tissues were reflected as proportional increases in both myofibrillar and soluble proteins. It is suggested that the increase in synthesis at this time may result from an increase in both the abailability and active involvement of ribosomes, and that these anabolic trends may be caused by spontaneous fibrillation and/or the amount of passive stretching of the denervated muscles.


1996 ◽  
Vol 80 (3) ◽  
pp. 734-741 ◽  
Author(s):  
E. E. Dupont-Versteegden

The effects of exercise and the combination of exercise and clenbuterol on progression of muscular dystrophy were studied in mdx mice. At 3 wk of age, mdx mice were randomly assigned to sedentary (MS), exercise (ME), or combined exercise and clenbuterol (MEC) groups. Clenbuterol was given in the drinking water (1.0-1.5 mg . kg body weight-1 . day-1), and exercise consisted of spontaneous running activity on exercise wheels. At 3 mo or 1 yr of age, ventilatory function, contractile properties, and morphological characteristics of the soleus (Sol) and diaphragm (Dia) muscles were measured. The mdx mice receiving clenbuterol ran less than the mice without clenbuterol. The combination of clenbuterol and exercise was associated with an increase in Sol muscle weight and a muscle weight-to-body weight ratio of 30-35% compared with the sedentary group and approximately 20% compared to exercise alone. Myosin and total protein concentrations of the Sol and Dia increased in the MEC group at 1 yr of age only. Normalized active tension was increased in the Dia at 1 yr of age in both the ME and MEC groups by approximately 30%. Absolute tetanic tension of the Sol was increased at both 3 mo and 1 yr of age in the MEC compared with the MS group. At 1 yr of age, there was an additional 23% increase compared with the ME group. Fatigability increased in the MEC group by approximately 25% in the Sol and Dia muscles at both ages compared with the MS and ME groups. Results indicate that exercise and exercise plus clenbuterol decrease the progression of muscular dystrophy. However, different mechanisms may be involved because the combination of clenbuterol and exercise resulted in increased fatigability and the development of deformities, whereas exercise alone did not. Therefore, clenbuterol may not be suitable for use in patients with muscular dystrophy.


2018 ◽  
Vol 115 (46) ◽  
pp. E10849-E10858 ◽  
Author(s):  
Yan Li ◽  
Jingjing Jiang ◽  
Wei Liu ◽  
Hui Wang ◽  
Lei Zhao ◽  
...  

The metabolic regulation of cell death is sophisticated. A growing body of evidence suggests the existence of multiple metabolic checkpoints that dictate cell fate in response to metabolic fluctuations. However, whether microRNAs (miRNAs) are able to respond to metabolic stress, reset the threshold of cell death, and attempt to reestablish homeostasis is largely unknown. Here, we show that miR-378/378* KO mice cannot maintain normal muscle weight and have poor running performance, which is accompanied by impaired autophagy, accumulation of abnormal mitochondria, and excessive apoptosis in skeletal muscle, whereas miR-378 overexpression is able to enhance autophagy and repress apoptosis in skeletal muscle of mice. Our in vitro data show that metabolic stress-responsive miR-378 promotes autophagy and inhibits apoptosis in a cell-autonomous manner. Mechanistically, miR-378 promotes autophagy initiation through the mammalian target of rapamycin (mTOR)/unc-51-like autophagy activating kinase 1 (ULK1) pathway and sustains autophagy via Forkhead box class O (FoxO)-mediated transcriptional reinforcement by targeting phosphoinositide-dependent protein kinase 1 (PDK1). Meanwhile, miR-378 suppresses intrinsic apoptosis initiation directly through targeting an initiator caspase—Caspase 9. Thus, we propose that miR-378 is a critical component of metabolic checkpoints, which integrates metabolic information into an adaptive response to reduce the propensity of myocytes to undergo apoptosis by enhancing the autophagic process and blocking apoptotic initiation. Lastly, our data suggest that inflammation-induced down-regulation of miR-378 might contribute to the pathogenesis of muscle dystrophy.


2008 ◽  
Vol 22 (11) ◽  
pp. 2448-2465 ◽  
Author(s):  
Ramesh Narayanan ◽  
Christopher C. Coss ◽  
Muralimohan Yepuru ◽  
Jeffrey D. Kearbey ◽  
Duane D. Miller ◽  
...  

Abstract Androgen receptor (AR) ligands are important for the development and function of several tissues and organs. However, the poor oral bioavailability, pharmacokinetic properties, and receptor cross-reactivity of testosterone, coupled with side effects, place limits on its clinical use. Selective AR modulators (SARMs) elicit anabolic effects in muscle and bone, sparing reproductive organs like the prostate. However, molecular mechanisms underlying the tissue selectivity remain ambiguous. We performed a variety of in vitro studies to compare and define the molecular mechanisms of an aryl propionamide SARM, S-22, as compared with dihydrotestosterone (DHT). Studies indicated that S-22 increased levator ani muscle weight but decreased the size of prostate in rats. Analysis of the upstream intracellular signaling events indicated that S-22 and DHT mediated their actions through distinct pathways. Modulation of these pathways altered the recruitment of AR and its cofactors to the PSA enhancer in a ligand-dependent fashion. In addition, S-22 induced Xenopus laevis oocyte maturation and rapid phosphorylation of several kinases, through pathways distinct from steroids. These studies reveal novel differences in the molecular mechanisms by which S-22, a nonsteroidal SARM, and DHT mediate their pharmacological effects.


1990 ◽  
Vol 69 (4) ◽  
pp. 1390-1396 ◽  
Author(s):  
E. Derom ◽  
S. Janssens ◽  
V. De Bock ◽  
M. Decramer

We examined the effects of theophylline on contractile properties and high-frequency fatigue of canine diaphragm in vitro. Eighteen diaphragm muscle bundles were obtained from 10 anesthetized dogs and equilibrated in oxygenated Krebs solution to 100, 200, or 300 mg/l theophylline. These bundles were compared with 18 matched control bundles from the contralateral hemidiaphragm. No statistically significant differences in twitch tension, tetanic tension, twitch-to-tetanus ratio, time to peak tension, or half-relaxation time were observed. Concentrations of 300 mg/l theophylline, however, significantly (P less than 0.05) increased force production at 10 Hz by 32%. A similar tendency was present at lower concentrations and exhibited a clear dose-response behavior. High-frequency fatigue was similar in control and theophylline-treated bundles. We conclude that supratherapeutic in vitro concentrations of theophylline do not increase maximal tetanic tension and do not protect against muscle fatigue but potentiate relative force production at low stimulation frequencies. This relatively small effect cannot be explained by poor diffusion of the drug in the muscle bundle, because theophylline concentrations in the muscle bath and in the muscle bundle were virtually identical. Moreover, it remains unclear whether this potentially beneficial effect can be achieved at in vivo attainable serum concentrations.


1986 ◽  
Vol 251 (1) ◽  
pp. R165-R173 ◽  
Author(s):  
J. Turinsky

Soleus muscles of rats were studied up to 16 days after sciatic nerve transection. At the end of this period the denervated soleus muscles exhibited decreased content of diphosphatidylglycerol (-44%), normal level of phosphatidylethanolamine, and increased contents of phosphatidylcholine (+24%), sphingomyelin (+48%), lysophosphatidylcholine (+110%), phosphatidylinositol (+37%), and phosphatidylserine (+40%) per milligram of tissue protein. In studies in vitro, prostaglandin E2 (PGE2) release and tyrosine release by denervated soleus muscles were 319 and 141%, respectively, greater than those of sham muscles. An almost complete inhibition of PGE2 release with 5 X 10(-4) M aspirin or 2.8 X 10(-6) M indomethacin had no effect on tyrosine release of sham muscles or the stimulated tyrosine release of the denervated muscles. Addition of 5 X 10(-5) M cycloheximide in the medium resulted in 63% inhibition of PGE2 release by both groups of muscles; concomitant absolute increments in tyrosine releases by denervated and sham muscles did not statistically differ. In the presence of both 5 X 10(-5) M cycloheximide and 5 X 10(-4) M aspirin in the medium, PGE2 production by denervated and sham muscles was inhibited 87% while tyrosine release of denervated muscles was 108% higher than that of sham animals. It is concluded that 1) atrophy of denervated soleus muscle is associated with stimulated activity of tissue phospholipase A2, increased production of prostaglandin E2, increased total proteolytic rate, and unchanged rate of protein synthesis; 2) acute inhibition of PGE2 production does not inhibit the stimulated proteolysis in denervated muscle; and 3) cycloheximide inhibits PGE2 production by muscle.


1989 ◽  
Vol 257 (3) ◽  
pp. E418-E425 ◽  
Author(s):  
M. O. Sowell ◽  
S. L. Dutton ◽  
M. G. Buse

Denervation (24 h) of skeletal muscle causes severe postreceptor insulin resistance of glucose transport and glycogen synthesis that is demonstrable in isolated muscles after short (30 min) preincubations. After longer preincubations (2-4 h), the insulin response of glucose transport increased to normal, whereas glycogen synthesis remained insulin resistant. Basal and insulin-stimulated amino acid transport were significantly lower in denervated muscles than in controls after short or long incubations, although the percentage stimulation of transport by insulin was not significantly different. The development of glucose transport insulin resistance after denervation was not attributable to increased sensitivity to glucocorticoids or adenosine. The selective in vitro reversal of glucose transport insulin resistance was not dependent on medium composition, did not require protein or prostaglandin synthesis, and could not be attributed to release of a positive regulator into the medium. The data suggest 1) the insulin receptor in muscle stimulates glucose transport by a signaling pathway that is not shared by other insulin-sensitive effector systems, and 2) denervation may affect insulin receptor signal transduction at more than one site.


1982 ◽  
Vol 53 (5) ◽  
pp. 1263-1272 ◽  
Author(s):  
G. A. Farkas ◽  
C. Roussos

In vitro contractile properties of the diaphragm were measured in four groups of inbred adult hamsters (greater than 40wk), randomly divided into sedentary control (SC), exercise control (EC), sedentary emphysematous (SE), and exercise emphysematous (EE) groups. Emphysema was induced by a single endotracheal instillation of elastase. Exercise consisted of running 1 h/day, 7 days/wk for 20 wk. Functional residual capacity (FRC), measured by means of a pressure box, was approximately 2.5 times greater in both emphysematous groups compared with control groups. Small diaphragmatic bundles were then isolated and subjected to in vitro analysis of isometric contractile properties. No differences were observed among the four groups in time to peak tension, half-relaxation time, and shape of the force-frequency curve. The diaphragmatic length-tension curve of emphysematous animals was displaced toward the left; maximal tetanic tension was similar in all groups, while optimal length (Lo), defined as the length at which maximal twitch tension occurred, was significantly shorter in both emphysematous groups. The Lo was negatively correlated with the FRC. Exercise tended to increase the in vitro endurance of the diaphragm bundles in control animals only. Diaphragms from both emphysematous groups, however, did show the greatest resistance to fatigue. It is concluded that 1) daily running for 1 h does not influence the diaphragmatic contractile properties in the hamster, but fatigue was reduced; 2) the load of chronic emphysema decreased the hamster's diaphragm fatiguability; and 3) the diaphragms of emphysematous hamsters chronically adapt by decreasing diaphragmatic length in proportion to the degree of hyperinflation and thus probably continue to operate at an Lo.


1976 ◽  
Vol 231 (5) ◽  
pp. 1520-1526 ◽  
Author(s):  
A Maier ◽  
JL Crockett ◽  
DR Simpson ◽  
IV Saubert CW ◽  
VR Edgerton

Guinea pig hindlimbs were unilaterally immobilized at resting length to evaluate histochemical, biochemical, and contractile properties of immobilized muscle. Contralateral limbs remained unrestrained. Four weeks later contractile properties were measured under chloral hydrate anesthesia. Average time-to-peak tension of the immobilized soleus was 30% less, whereas that of the gastrocnemius was not significantly changed relative to contralateral muscles. Immobilized soleus muscles acquired as much as 25% fibers with high alkaline myofibrillar adenosine triphosphatase activity; these fibers do not occur in the normal muscle. Neither the immobilized soleus nor gastrocnemius fatigued more quickly than their contralateral counterparts. In the immobilized gastrocnemius myofibrillar protein (mg/g muscle) decreased to 76% and maximum tetanic tension to 70% of contralateral values. However, tetanic tension per gram wet muscle weight or 100 mg myofibrillar protein was significantly greater in the immobilized gastrocnemius. No specific factor responsible for the increased tetanic tension could be identified.


1984 ◽  
Vol 52 (6) ◽  
pp. 1131-1139 ◽  
Author(s):  
Y. Fukami

Active tetanic tension developed by stimulation of a nerve innervating single isolated muscle spindles of the cat was measured. The maximum tetanic force varied among spindles, ranging from 2.3 to 8.5 mg. For four spindles, the maximum tetanic force was converted into the force per unit cross-sectional area of nuclear chain and nuclear bag fibers. The results are discussed in terms of structural and functional complexities of the intrafusal fibers. The length-tension diagram of single isolated spindles showed maximum tetanic tension occurring at a spindle length longer than 1o, which was defined as the length beyond which passive tension starts to develop. This result, which appears to be different from the corresponding diagram for extrafusal muscle, is discussed in relation to the existing reports on the mechanical properties of intrafusal fibers. Spindle sensory response vs. tetanic tension was analyzed for single isolated spindles with two independent nerve supplies, one containing sensory and the other containing fusimotor axons. The results suggest that the static discharge rate of sensory endings may be linearly related, within the range examined, to the tetanic plateau tension of intrafusal fibers.


Sign in / Sign up

Export Citation Format

Share Document