Development and characterization of novel biodegradable scaffold materials

2014 ◽  
Author(s):  
Tristan Fowler ◽  
Carina Kampleitner ◽  
Leander Poocza ◽  
Andrea Markus ◽  
Christian Dullin ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 295
Author(s):  
Stephanie E. Doyle ◽  
Lauren Henry ◽  
Ellen McGennisken ◽  
Carmine Onofrillo ◽  
Claudia Di Bella ◽  
...  

Degradable bone implants are designed to foster the complete regeneration of natural tissue after large-scale loss trauma. Polycaprolactone (PCL) and hydroxyapatite (HA) composites are promising scaffold materials with superior mechanical and osteoinductive properties compared to the single materials. However, producing three-dimensional (3D) structures with high HA content as well as tuneable degradability remains a challenge. To address this issue and create homogeneously distributed PCL-nanoHA (nHA) scaffolds with tuneable degradation rates through both PCL molecular weight and nHA concentration, we conducted a detailed characterisation and comparison of a range of PCL-nHA composites across three molecular weight PCLs (14, 45, and 80 kDa) and with nHA content up to 30% w/w. In general, the addition of nHA results in an increase of viscosity for the PCL-nHA composites but has little effect on their compressive modulus. Importantly, we observe that the addition of nHA increases the rate of degradation compared to PCL alone. We show that the 45 and 80 kDa PCL-nHA groups can be fabricated via indirect 3D printing and have homogenously distributed nHA even after fabrication. Finally, the cytocompatibility of the composite materials is evaluated for the 45 and 80 kDa groups, with the results showing no significant change in cell number compared to the control. In conclusion, our analyses unveil several features that are crucial for processing the composite material into a tissue engineered implant.


Author(s):  
Bhavin V. Mehta ◽  
Robert J. Setlock

An improved method for manufacturing prosthetic bones is examined. We are developing a new improved method for designing and manufacturing prosthetic bones that have a porous interior core covered by a solid outer shell, more closely matching the morphology of natural bone. The new method is compatible with a wide variety of materials, including polymers, metals, composites, and biodegradable scaffold materials. Use of biodegradable scaffold material holds the potential for eventual bone regeneration within and throughout the prosthesis. Regardless of the material selection, this improved type of prosthesis is expected to more closely mimic the overall material and structural properties of natural bone, including shape, strength, weight, and weight distribution. By fabricating prosthetic bones that duplicate the material and structural properties of natural bone, implants could be made to operate as precision replacements, feeling and functioning exactly like natural bone. In addition to improving patient comfort, these new prostheses are expected to reduce the occurrence of unnatural secondary wear patterns caused by current style prosthetic bones that function in unnatural fashions due to their non-matching material and structural properties.


2019 ◽  
Vol 14 (8) ◽  
pp. 753-768 ◽  
Author(s):  
Yifan Wu ◽  
Jianqiao Hong ◽  
Guangyao Jiang ◽  
Sihao Li ◽  
Shiming Chen ◽  
...  

Aim: To investigate whether platelet-rich gel (PRG) incorporation could promote meniscal regeneration of the silk scaffold. Materials & methods: A PRG-incorporated silk sponge was fabricated for reconstruction of the meniscus in a rabbit meniscectomy model. Subsequently, characterization of the scaffold, as well as the in vitro cytocompatibility and in vivo function was evaluated. Results: Our results showed that the PRG-incorporated silk scaffold provided a sustained release of TGF-β1 over 1 week. The PRG enhanced the cytocompatibility in vitro and cell infiltration in vivo of the silk sponge. Meanwhile, the implantation of the composite in situ ameliorated the cartilage degeneration in knee at 3 months. Conclusion: These findings indicated that PRG-incorporated silk scaffold could promote functional regeneration of the meniscus and effectively prevented subsequent osteoarthritis after meniscectomy.


2021 ◽  
Vol 891 ◽  
pp. 77-82
Author(s):  
Sharyjel R. Cayabyab ◽  
Josefina R. Celorico ◽  
Cyron L. Custodio ◽  
Blessie A. Basilia

Utilization of natural biopolymers has shown potential in generating innovations for tissue engineering applications. This study aims to fabricate scaffolds from cellulose acetate derived from kapok fiber. Cellulose is extracted from raw kapok fibers by alkali treatment and delignification then synthesized into cellulose acetate. Kapok cellulose acetate (KCA) is dissolved in dimethyl sulfoxide to fabricate the scaffold. Materials were characterized using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectrometer, X-ray diffractometer (XRD) and Differential Scanning Calorimeter (DSC). FTIR analysis has shown that cellulose was extracted from kapok and cellulose acetate was successfully synthesized. XRD analysis also confirmed the presence of cellulose acetate. Results have also shown that synthesized KCA seems to have higher crystallinity than commercially available cellulose acetate (CCA). The degree of substitution (DS) of KCA was found to be 2.85 which is close to the DS value of tri-substituted cellulose acetate. DSC analysis has shown lower glass transition temperature of 52.15°C but higher degradation temperature of 300.43°C than the CCA. Moreover, the values for the enthalpy of fusion for two endotherms of KCA (44.0556 J/g and 18.6946 J/g) are higher than the values for CCA by 344% and 261%, respectively; thus, indicating the higher degree of crystallinity for synthesized KCA samples.


2007 ◽  
Vol 35 (8) ◽  
pp. 1357-1367 ◽  
Author(s):  
Antonio R. Webb ◽  
Bryan D. Macrie ◽  
Ananda S. Ray ◽  
Jack E. Russo ◽  
Andrew M. Siegel ◽  
...  

2005 ◽  
Vol 288-289 ◽  
pp. 377-380 ◽  
Author(s):  
Jian Lu ◽  
Xiao Yan Lin ◽  
Bo Jiang ◽  
Xu Dong Li ◽  
Ji Yong Chen ◽  
...  

A kind of medical collagen was prepared by hydrogel formation method. Chemical and physical properties were investigated by FTIR, amino acid analysis, SDS-PAGE, carbohydrate content analysis, heavy metal content analysis. Degradation experiments in vivo and subsequent histological investigations were carried out to evaluate the biological performance. The results suggested that the collagen achieved is promising in tissue engineering scaffold materials for a long-term (more than 12 weeks) implantation application.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Sign in / Sign up

Export Citation Format

Share Document