Variation of transferrin mRNA concentration in the rabbit mammary gland during the pregnancy–lactation–weaning cycle and in cultured mammary cells. A comparison with the other major milk protein mRNAs

1994 ◽  
Vol 130 (5) ◽  
pp. 522-529 ◽  
Author(s):  
C Puissant ◽  
M Bayat-Sarmadi ◽  
E Devinoy ◽  
L-M Houdebine

Puissant C, Bayat-Sarmadi M, Devinoy E, Houdebine L-M. Variation of transferrin mRNA concentration in the rabbit mammary gland during the pregnancy–lactation–weaning cycle and in cultured mammary cells. A comparison with the other major milk protein mRNAs. Eur J Endocrinol 1994;130:522–9. ISSN 0804–4643 The concentration of transferrin mRNA was evaluated during pregnancy and lactation in rabbit mammary gland and liver using northern blot and dot blot assays. Transferrin mRNA was present in the virgin rabbit mammary gland and its concentration increased as pregnancy proceeded, with a major enhancement after day 15. A high concentration was reached 3 days after parturition, with no additional increase during lactation and with a marked decline after weaning. During the same period, the concentration of transferrin mRNA showed only a very weak variation in liver. This mRNA was six times more abundant in mammary gland than in liver of lactating rabbit. The accumulation of transferrin mRNA in the mammary gland was concomitant with the accumulation of αs1-, β-, kcasein and WAP (whey acidic protein) mRNAs. The concentration of glyceraldehyde 3-phosphate dehydrogenase mRNA, taken as a non-inducible control mRNA, declined progressively during pregnancy to reach its lower level in lactation. These observations suggest that casein, WAP and transferrin mRNAs are subjected to a similar control mechanism in vivo, at least in the second half of pregnancy and during lactation. Experiments carried out in vitro using isolated rabbit epithelial mammary cells cultured on collagen I gel indicated that transferrin mRNA was abundant and only weakly inducible by the lactogenic hormones insulin, cortisol and prolactin, as opposed to caseins and WAP mRNAs. R5020, an analogue of progesterone, inhibited at most very slightly the accumulation of αs1-casein mRNA in the presence of prolactin and it did not reduce the expression of transferrin gene. The mammary cells cultured on a plastic support contained much less transferrin mRNA than those maintained on collagen gel or on EHS (Engelbreth–Holm–Swarm) extracellular matrix independently of any hormonal stimulation. These data suggest that although caseins, WAP and transferrin mRNAs have parallel variations during the pregnancy–lactation–weaning cycle, they are subjected to different mechanisms of regulation at the molecular level. The accumulation of the mRNAs for caseins and WAP is positively regulated by lactogenic hormones and by the presence of the extracellular matrix, whereas the accumulation of transferrin mRNA is positively regulated essentially by the presence of the matrix. The fact that the levels of all the mRNAs studied here are increased simultaneously as progesterone starts declining suggests that the steroid controls the action of a factor, possibly the presence of the extracellular matrix, that regulates the expression of all the milk protein genes. L-M Houdebine, Unité de Differenciation Cellulaire, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cédex, France

2004 ◽  
Author(s):  
Itamar Barash ◽  
Robert E. Rhoads

Original objectives: The long term objective of the project is to achieve higher content of protein in the milk of ruminants by modulating the translational machinery in the mammary gland. The first specific aim of the BARD proposal was to characterize responsiveness of various experimental systems to combination of lactogenic hormones and amino acids with particular emphasis on discrimination between the control of total protein synthesis and milk protein synthesis. Based on the results, we planned to proceed by characterizing the stage of protein synthesis in which the stimulation by lactogenic hormones and amino acid occur and finally we proposed to identify which components of the translation machinery are modified. Background to the topic: Milk protein is the most valuable component in milk, both for direct human consumption and for manufacturing cheese and other protein-based products. Attempts to augment protein content by the traditional methods of genetic selection and improved nutritional regimes have failed. The proposal was based on recent results suggesting that the limiting factor for augmenting protein synthesis in the bovine mammary gland is the efficiency of converting amino acids to milk proteins. Major conclusions, solutions, achievements: Insulin and prolactin synergistically stimulate â-casein mRNA translation by cytoplasmatic polyadenylation. The interaction between insulin and prolactin was demonstrated two decades ago as crucial for milk-protein synthesis, but the molecular mechanisms involved were not elucidated. We found in differentiated CID 9 mouse mammary epithelial cells line that insulin and prolactin synergistically increases the rate of milk protein mRNA translation. We focused on â-casein, the major milk protein, and found that the increase in â-casein mRNA translation was reflected in a shift to larger polysomes, indicating an effect on translational initiation. Inhibitors of the PI3K, mTOR, and MAPK pathways blocked insulin-stimulated total protein and â-casein synthesis but not the synergistic stimulation. Conversely, cordycepin, a polyadenylation inhibitor, abolished synergistic stimulation of protein synthesis without affecting insulin-stimulated translation. The poly(A) tract of â-casein mRNA progressively increased over 30 min of treatment with insulin plus prolactin. The 3’-untranslated region of â-casein mRNA was found to contain a cytoplasmic polyadenylation element (CPE), and in reporter constructs, this was sufficient for the translational enhancement and mRNA-specific polyadenylation. Furthermore, insulin and prolactin stimulated phosphorylation of cytoplasmic polyadenylation element binding protein (CPEB) but did not increase cytoplasmic polyadenylation. 


1998 ◽  
Vol 18 (4) ◽  
pp. 1783-1792 ◽  
Author(s):  
Nathalie Cella ◽  
Bernd Groner ◽  
Nancy E. Hynes

ABSTRACT The lactogenic hormones, i.e., prolactin and glucocorticoids, act in concert to stimulate transcription factors responsible for hormone-dependent milk protein gene expression. In the mammary gland, prolactin activates Stat5a and Stat5b and glucocorticoids activate the glucocorticoid receptor (GR). Immunoprecipitation experiments revealed that in mammary cells, Stat5a, Stat5b, and the GR are physically associated in vivo. The association is not dependent on lactogenic hormone treatment and is evident at all stages of mammary gland development. Immunodepletion experiments indicated that a fraction of GR and Stat5 proteins are not associated, suggesting that there are different intracellular pools of these proteins. Lactogenic hormone treatment of HC11 mammary cells resulted in tyrosine phosphorylation of Stat5a and Stat5b, dimerization, and rapid nuclear translocation of both Stat5 proteins. Following hormone treatment, Stat5a-Stat5b heterodimers were detected by their coimmunoprecipitation. In addition, immunodepletion experiments followed by gel shift analyses revealed the presence of active Stat5a and Stat5b homodimers. In mammary cells, Stat5b homodimers are less abundant than Stat5a homodimers. Although the GR does not bind the Stat5 DNA binding site directly, it could be detected with the Stat5-DNA complex. These results suggest that glucocorticoids affect milk protein gene expression via association of the GR with Stat5. Thus, there is a functional coupling between Stat-dependent and nuclear hormone receptor-dependent gene transcription.


1996 ◽  
Vol 24 (3) ◽  
pp. 348S-348S ◽  
Author(s):  
Nadia Goberdhan ◽  
Caroline Dive ◽  
Charles H Streuli

2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


2020 ◽  
Author(s):  
Reena Singh ◽  
Richard Tan ◽  
Clara Tran ◽  
Thomas Loudovaris ◽  
Helen E. Thomas ◽  
...  

1986 ◽  
Vol 32 (10) ◽  
pp. 1832-1835 ◽  
Author(s):  
P C Patel ◽  
L Aubin ◽  
J Côte

Abstract We investigated two techniques of immunoblotting--the Western blot and the dot blot--for use in detecting prostatic acid phosphatase (PAP, EC 3.1.3.2). We used polyclonal antisera to human PAP, produced in rabbits by hyperimmunization with purified PAP, and PAP-specific monoclonal antibodies in the immunoenzymatic protocols. We conclude that PAP can be readily detected by Western blots with use of polyclonal antisera, but not with monoclonal antibodies. On the other hand, using a dot blot assay, we could easily detect PAP with both polyclonal and monoclonal antibodies.


1990 ◽  
Vol 9 (4) ◽  
pp. 307-322 ◽  
Author(s):  
Alexander Kennedy ◽  
Robert N. Frank ◽  
Laura B. Sotolongo ◽  
Arup Das ◽  
Nancy L. Zhang

1973 ◽  
Vol 59 (2) ◽  
pp. 231-247 ◽  
Author(s):  
P. E. HARTMANN

SUMMARY Mammary secretion (1·2–2·0 ml) was collected from the milk sinus of each mammary gland (quarter) of two pregnant heifers and eight pregnant cows (dry period 49–229 days), first at weekly intervals from 40 days before parturition, then with increasing frequency as parturition approached. The progressive changes in the concentration of lactose, glucose, casein, non-casein protein and fat in the mammary secretion were determined. Calves were separated from the cows immediately after birth and the yield and composition of milk from individual quarters were determined for 5 days after parturition. Two quarters (milked quarters) of each of a further five cows were milked throughout pregnancy, while the other two quarters (unmilked quarters) of each cow were allowed to involute (dry off) 63– 104 days before parturition. Small samples (5–10 ml) of secretion were collected from the unmilked quarters, first at weekly intervals after drying off and then every second day from 10 to 15 days before parturition. On the days that the unmilked quarters were sampled, corresponding composite milk samples were collected from the milked quarters and the progressive changes in the yield of milk, lactose and fat were determined. The changes in the concentration of lactose and glucose in the mammary secretion, during drying off in late lactation, were determined in an additional five cows. In most cows allowed a usual dry period, and in the unmilked quarters of cows in which two quarters were milked throughout pregnancy, the concentration of lactose gradually increased from about 8 to 12 days before parturition to reach levels of about half those found in normal milk just before parturition. However, in some cows the concentration of lactose was low until 1–2 days before parturition and then increased abruptly, whereas in others the concentration of lactose increased slowly from as early as 32 days before parturition. A further rapid increase in the concentration of lactose in the mammary secretion occurred between 0 and 4 days before parturition in all cows. This latter increase was accompanied by an abrupt increase in the yield of milk, lactose and fat in the milked quarters of the cows in which two quarters were milked throughout pregnancy. These observations suggest that the initiation of lactation in the cow develops in two phases, a limited secretion of milk constituents occurs in late pregnancy and then 0–4 days before parturition copious secretion (lactogenesis) occurs.


2002 ◽  
Vol 277 (20) ◽  
pp. 17589-17596 ◽  
Author(s):  
Marie Kannius-Janson ◽  
Eva M. Johansson ◽  
Gunnar Bjursell ◽  
Jeanette Nilsson

Sign in / Sign up

Export Citation Format

Share Document