scholarly journals Inhibition of insulin secretion via distinct signaling pathways in alpha2-adrenoceptor knockout mice

2003 ◽  
pp. 343-350 ◽  
Author(s):  
M Peterhoff ◽  
A Sieg ◽  
M Brede ◽  
CM Chao ◽  
L Hein ◽  
...  

OBJECTIVE: Adrenaline inhibits insulin secretion through activation of alpha(2)-adrenoceptors (ARs). These receptors are linked to pertussis toxin-sensitive G proteins. Agonist binding leads to inhibition of adenylyl cyclase, inhibition of Ca(2+) channels and activation of K(+) channels. Recently, three distinct subtypes of alpha(2)-AR were described, alpha(2A)-AR, alpha(2B)-AR and alpha(2C)-AR. At present, it is unknown which of these alpha(2)-AR subtype(s) may regulate insulin secretion. We used mice deficient in alpha(2)-ARs to analyze the coupling and role of individual alpha(2)-AR subtypes in insulin-secreting beta cells. METHODS: The inhibitory effect of adrenaline on insulin secretion was measured in freshly isolated and cultured wild type (wt) and alpha(2)-AR knockout (KO) mouse islets in order to examine the receptor subtypes which mediate adrenaline-induced inhibition of insulin secretion. Adenylyl cyclase activity was measured in isolated cultured islets. Membrane potential was measured using the amphotericin B permeabilized patch clamp method in isolated and cultured single islet cells. RESULTS: In wt, alpha(2A)- and alpha(2C)-AR KO mouse islets, adrenaline, 1 microM/L, inhibited secretion by 83, 80 and 100% respectively. In contrast, in alpha(2A/2C)-AR double KO mouse islets, adrenaline had no effect on stimulated secretion indicating that both alpha(2A)-AR and alpha(2C)-AR, but not alpha(2B)-AR, are functionally expressed in mouse islets. Surprisingly, glucose (16.7 mM/L)-induced secretion in the presence of 1 microM/L forskolin was greatly impaired in alpha(2A)-AR KO islets. However, when cAMP levels were increased further by the combination of forskolin (5 microM/L) and 3-isobutyl-1-methylxanthine (100 microM/L), secretion was stimulated 2.7-fold (8.5-fold in wt islets). Adrenaline lowered the concentration of cAMP in wt and alpha(2C)-AR KO mouse islets by 74%. Adrenaline also hyperpolarized wt and alpha(2C)-AR KO beta cells. In contrast, adrenaline did not inhibit adenylyl cyclase in islets of alpha(2A)-AR KO mice, nor did it hyperpolarize alpha(2A)-AR KO beta cells. CONCLUSION: Adrenaline inhibits insulin release through alpha(2A)- and alpha(2C)-ARs via distinct intracellular signaling pathways.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 286
Author(s):  
Nicola Marrano ◽  
Rosaria Spagnuolo ◽  
Giuseppina Biondi ◽  
Angelo Cignarelli ◽  
Sebastio Perrini ◽  
...  

Extra virgin olive oil (EVOO) is a major component of the Mediterranean diet and is appreciated worldwide because of its nutritional benefits in metabolic diseases, including type 2 diabetes (T2D). EVOO contains significant amounts of secondary metabolites, such as phenolic compounds (PCs), that may positively influence the metabolic status. In this study, we investigated for the first time the effects of several PCs on beta-cell function and survival. To this aim, INS-1E cells were exposed to 10 μM of the main EVOO PCs for up to 24 h. Under these conditions, survival, insulin biosynthesis, glucose-stimulated insulin secretion (GSIS), and intracellular signaling activation (protein kinase B (AKT) and cAMP response element-binding protein (CREB)) were evaluated. Hydroxytyrosol, tyrosol, and apigenin augmented beta-cell proliferation and insulin biosynthesis, and apigenin and luteolin enhanced the GSIS. Conversely, vanillic acid and vanillin were pro-apoptotic for beta-cells, even if they increased the GSIS. In addition, oleuropein, p-coumaric, ferulic and sinapic acids significantly worsened the GSIS. Finally, a mixture of hydroxytyrosol, tyrosol, and apigenin promoted the GSIS in human pancreatic islets. Apigenin was the most effective compound and was also able to activate beneficial intracellular signaling. In conclusion, this study shows that hydroxytyrosol, tyrosol, and apigenin foster beta-cells’ health, suggesting that EVOO or supplements enriched with these compounds may improve insulin secretion and promote glycemic control in T2D patients.


1996 ◽  
Vol 149 (1) ◽  
pp. 145-154 ◽  
Author(s):  
K Josefsen ◽  
J P Stenvang ◽  
H Kindmark ◽  
P-O Berggren ◽  
T Horn ◽  
...  

Abstract Studies of individual cell types in the islets of Langerhans are complicated by the cells' functional coupling by gap junctions and paracrine interaction. Access to purified alpha and beta cells is therefore desirable. We present a simplified and optimized method for fluorescence-activated cell sorting of endocrine pancreatic rat islets. For dispersion of the islets, dispase was superior to trypsin, as the number of vital single cells was higher (1·1 ± 0·1 × 103 vs 0·6 ± 0·1 × 103/islet, P<0·05). The purity of the sorted cells was 96·7 ± 1·2% for the non-beta cells and 97·8 ± 0·6% for the beta cells (numbers in percentages of endocrine cells). In culture, isolated beta cells, non-beta cells and mixtures of beta and non-beta cells formed aggregates, but not at low temperature (4 °C) and not in medium with low serum content (2%). Finally, in pure beta cell aggregates, glucose stimulated changes in cytoplasmic free Ca2+ concentration although both glucose- and arginine-induced insulin secretion was much reduced. We conclude that alpha cells are necessary for insulin secretion but not for glucose sensing. Journal of Endocrinology (1996) 149, 145–154


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Giulia Cantini ◽  
Adriana Lombardi ◽  
Elisabetta Piscitelli ◽  
Giada Poli ◽  
Elisabetta Ceni ◽  
...  

Rosiglitazone (RGZ), a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR)-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R) of human adrenocortical carcinoma (ACC) and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR). We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K)-Akt, and extracellular signal-regulated kinase (ERK1/2) cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.


Endocrinology ◽  
2020 ◽  
Vol 162 (1) ◽  
Author(s):  
Eike Früh ◽  
Christin Elgert ◽  
Frank Eggert ◽  
Stephan Scherneck ◽  
Ingo Rustenbeck

Abstract The role of depolarization in the inverse glucose-dependence of glucagon secretion was investigated by comparing the effects of KATP channel block and of high potassium. The secretion of glucagon and insulin by perifused mouse islets was simultaneously measured. Lowering glucose raised glucagon secretion before it decreased insulin secretion, suggesting an alpha cell–intrinsic signal recognition. Raising glucose affected glucagon and insulin secretion at the same time. However, depolarization by tolbutamide, gliclazide, or 15 mM KCl increased insulin secretion before the glucagon secretion receded. In contrast to the robust depolarizing effect of arginine and KCl (15 and 40 mM) on single alpha cells, tolbutamide was of variable efficacy. Only when applied before other depolarizing agents had tolbutamide a consistent depolarizing effect and regularly increased the cytosolic Ca2+ concentration. When tested on inside-out patches tolbutamide was as effective on alpha cells as on beta cells. In the presence of 1 µM clonidine, to separate insulinotropic from glucagonotropic effects, both 500 µM tolbutamide and 30 µM gliclazide increased glucagon secretion significantly, but transiently. The additional presence of 15 or 40 mM KCl in contrast led to a marked and lasting increase of the glucagon secretion. The glucagon secretion by SUR1 knockout islets was not increased by tolbutamide, whereas 40 mM KCl was of unchanged efficiency. In conclusion a strong and sustained depolarization is compatible with a marked and lasting glucagon secretion. KATP channel closure in alpha cells is less readily achieved than in beta cells, which may explain the moderate and transient glucagonotropic effect.


1987 ◽  
Vol 166 (4) ◽  
pp. 1174-1179 ◽  
Author(s):  
E H Leiter

This study has used in vitro techniques to investigate the potential interactions between mouse pancreatic islet cells and syngeneic macrophages (M phi). Islets strongly stimulated M phi migration from agarose microdroplets; insulin was the only one of four islet cell hormones tested that was effective individually. Chronic exposure of islet monolayers to recombinant mouse IL-1, an M phi secretory product, was not cytolytic, but inhibited insulin secretion, reduced intracellular insulin content, and produced beta cell-specific degranulation. These effects were unique to IL-1; another monokine, tumor necrosis factor, as well as the lymphokine IL-2, and lymphotoxin were all without effect on insulin secretion or monolayer viability at the concentrations tested. The potential pathological consequences of the chemoattractive action of insulin on M phi, and the inhibitory effect of IL-1 on insulin secretion, are discussed.


Diabetologia ◽  
2014 ◽  
Vol 58 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Haiqiang Dou ◽  
Changhe Wang ◽  
Xi Wu ◽  
Lijun Yao ◽  
Xiaoyu Zhang ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 741-748 ◽  
Author(s):  
Paul A. Smith

Somatostatin (SRIF) is a well-established inhibitor of insulin secretion, an effect in part mediated by a direct inhibition of voltage-operated Ca2+-channels. However, the identity of the somatostatin receptor subtypes (SSTRs) and voltage-operated Ca2+-channels involved in this process are unknown. Whole-cell perforated patch-clamp methods were applied to the murine pancreatic β-cell line, MIN6, to explore the molecular pharmacology of this problem. SRIF-14 inhibited voltage-gated Ca2+ currents (ICa2+) by 19 ± 3% (n=24) with a pEC50 = 9.05 (95% confidence limits 9–9.1). This action was mimicked solely by 100 nm CH-275, a selective agonist at the somatostatin type 1 receptor (SSTR1), but not by 100 nm BIM-23027, L-362855, or NNC-269100; agonists selective for the other four SSTRs known to exist in MIN6. The inhibition of ICa2+ produced by SRIF and CH-275 was insensitive to pertussis toxin but was reversed by a prepulse to +100 mV. The inhibition of ICa2+ by SRIF-14 was unaffected by 20 μm nifedipine, an inhibitor of L-type Ca2+ channels. Application of the specific N-type Ca2+ channel (Cav2.2) inhibitor ω-conotoxin GV1A at 100 nm mimicked, and as a consequence abolished, the inhibitory effect of SRIF-14 on ICa2+. SRIF selectively inhibits N-type Ca2+-channels in murine pancreatic β-cells via exclusive coupling with SSTR1. These findings help explain how SSTR1 activation can inhibit insulin secretion in pancreatic β-cells and suggest a possible new therapeutic lead for treatment of hyperinsulinemia. In pancreatic β-cells, somatostatin selectively inhibits N-type, but not other, Ca2+-channels via a direct and exclusive coupling with somatostatin receptor subtype 1.


2019 ◽  
Author(s):  
John T. Walker ◽  
Rachana Haliyur ◽  
Heather A. Nelson ◽  
Matthew Ishahak ◽  
Gregory Poffenberger ◽  
...  

SUMMARYG-protein-coupled-receptors (GPCRs) modulate insulin secretion from β cells and glucagon secretion from α cells. Here, we developed an integrated approach to study the function of primary human islet cells using genetically modified pseudoislets that resemble native islets across multiple parameters. We studied the Gi and Gq GPCR pathways by expressing the designer receptors exclusively activated by designer drugs (DREADDs) hM4Di or hM3Dq. Activation of Gi signaling reduced insulin and glucagon secretion, while activation of Gq signaling stimulated glucagon secretion but had both stimulatory and inhibitory effects on insulin secretion. Further, we developed a microperifusion system that allowed synchronous acquisition of GCaMP6f biosensor signal and hormone secretory profiles and showed that the dual effects for Gq signaling occur through changes in intracellular Ca2+. By combining pseudoislets with a microfluidic system, we co-registered intracellular signaling dynamics and hormone secretion and demonstrated differences in GPCR signaling pathways between human β and α cells.


2004 ◽  
Vol 286 (2) ◽  
pp. E304-E310 ◽  
Author(s):  
Jianhua Shao ◽  
Liping Qiao ◽  
Jacob E. Friedman

Islet cells undergo major changes in structure and function to meet the demand for increased insulin secretion during pregnancy, but the nature of the hormonal interactions and signaling events is incompletely understood. Here, we used the glucose-responsive MIN6 β-cell line treated with prolactin (PRL), progesterone (PRG), and dexamethasone (DEX, a synthetic glucocorticoid), all elevated during late pregnancy, to study their effects on mechanisms of insulin secretion. DEX alone or combined with PRL and PRG inhibited insulin secretion in response to 16 mM glucose-stimulating concentrations. However, in the basal state (3 mM glucose), the insulin levels in response to DEX treatment were unchanged, and the three hormones together maintained higher insulin release. There were no changes of protein levels of GLUT2 or glucokinase (GK), but PRL or PRG treatment increased GK activity, whereas DEX had an inhibitory effect on GK activity. α-Ketoisocaproate (α-KIC)-stimulated insulin secretion was also reduced by DEX alone or combined with PRL and PRG, suggesting that DEX may inhibit distal steps in the insulin-exocytotic process. PRL treatment increased the concentration of intracellular cAMP in response to 16 mM glucose, suggesting a role for cAMP in potentiation of insulin secretion, whereas DEX alone or combined with PRL and PRG reduced cAMP levels by increasing phosphodiesterase (PDE) activity. These data provide evidence that PRL and to a lesser extent PRG, which increase in early pregnancy, enhance basal and glucose-stimulated insulin secretion in part by increasing GK activity and amplifying cAMP levels. Glucocorticoid, which increases throughout gestation, counteracts only glucose-stimulated insulin secretion under high glucose concentrations by dominantly inhibiting GK activity and increasing PDE activity to reduce cAMP levels. These adaptations in the β-cell may play an important role in maintaining the basal hyperinsulinemia of pregnancy while limiting the capacity of PRL and PRG to promote glucose-stimulated insulin secretion during late gestation.


1983 ◽  
Vol 245 (4) ◽  
pp. E391-E400
Author(s):  
R. S. Hill ◽  
W. B. Rhoten

The effect of microtubule-altering agents on the insulin secretory response to glucose during the perinatal period was investigated with an in vitro perifusion system. Rat pancreatic mince from day 17 of gestation (D17G) to day 6 postnatally (D6PN) were perifused for 60 min in basal glucose followed by 45 min with high glucose (3.5 mg/ml) or with high glucose plus 10 mM arginine (D17G). The two phases of insulin secretion in response to high glucose developed in an age-dependent and asynchronous manner. The first phase matured between D17G and D18G, and maturation of the second phase occurred subsequently. Vinblastine (VB) (20 or 100 microM) had a differential effect on the insulin secretory response. VB did not inhibit stimulated insulin release at D17G. This absence of an inhibitory effect of VB at D17G could not be explained by the absence of polymerized tubulin because microtubules were present in the control beta-cells and, in addition, VB treatment resulted in the formation of paracrystalline deposits. Subsequently in development, and with isolated islets of the adult, VB inhibited stimulated insulin release. Heavy water (deuterium oxide, D2O) inhibited stimulated insulin secretion at D17G but blocked completely insulin release from the near-term beta-cell. The inhibition of insulin secretion by D2O was rapidly reversed when water replaced D2O in the perifusion media. The results indicate that the maturation of the second phase of insulin secretion coincides with the ability of the microtubule-altering agents to modify the insulin secretory response. One possible explanation for these findings is that at D17G the microtubules are not coupled physicochemically to other molecules or structures necessary for their role in insulin secretion to be expressed fully.


Sign in / Sign up

Export Citation Format

Share Document