Fluorescence-activated cell sorted rat islet cells and studies of the insulin secretory process

1996 ◽  
Vol 149 (1) ◽  
pp. 145-154 ◽  
Author(s):  
K Josefsen ◽  
J P Stenvang ◽  
H Kindmark ◽  
P-O Berggren ◽  
T Horn ◽  
...  

Abstract Studies of individual cell types in the islets of Langerhans are complicated by the cells' functional coupling by gap junctions and paracrine interaction. Access to purified alpha and beta cells is therefore desirable. We present a simplified and optimized method for fluorescence-activated cell sorting of endocrine pancreatic rat islets. For dispersion of the islets, dispase was superior to trypsin, as the number of vital single cells was higher (1·1 ± 0·1 × 103 vs 0·6 ± 0·1 × 103/islet, P<0·05). The purity of the sorted cells was 96·7 ± 1·2% for the non-beta cells and 97·8 ± 0·6% for the beta cells (numbers in percentages of endocrine cells). In culture, isolated beta cells, non-beta cells and mixtures of beta and non-beta cells formed aggregates, but not at low temperature (4 °C) and not in medium with low serum content (2%). Finally, in pure beta cell aggregates, glucose stimulated changes in cytoplasmic free Ca2+ concentration although both glucose- and arginine-induced insulin secretion was much reduced. We conclude that alpha cells are necessary for insulin secretion but not for glucose sensing. Journal of Endocrinology (1996) 149, 145–154

Endocrinology ◽  
2020 ◽  
Author(s):  
David Cottet-Dumoulin ◽  
Vanessa Lavallard ◽  
Fanny Lebreton ◽  
Charles H Wassmer ◽  
Kevin Bellofatto ◽  
...  

Abstract A correct biosynthetic activity is thought to be essential for the long-term function and survival of islet cells in culture and possibly also after islet transplantation. Compared to the secretory activity, biosynthetic activity has been poorly studied in pancreatic islet cells. Here we aimed to assess biosynthetic activity at the single cell level to investigate if protein synthesis is dependent on secretagogues and increased as a consequence of hormonal secretion. Biosynthetic activity in rat islet cells was studied at the single cell level using O-propargyl-puromycin (OPP) that incorporates into newly translated proteins and chemically ligates to a fluorescent dye by “click” reaction. Heterogeneous biosynthetic activity was observed between the four islet cell types, with delta cells showing the higher relative protein biosynthesis. Beta cells protein biosynthesis was increased in response to glucose while IBMX and PMA, two drugs known to stimulate insulin secretion, had no similar effect on protein biosynthesis. However, after several hours of secretion, protein biosynthesis remained high even when cells were challenged to basal conditions. These results suggest that mechanisms regulating secretion and biosynthesis in islet cells are different, with glucose directly triggering beta cells protein biosynthesis, independently of insulin secretion. Furthermore, this OPP labelling approach is a promising method to identify newly synthesized proteins under various physiological and pathological conditions.


2018 ◽  
Vol 314 (5) ◽  
pp. E512-E521 ◽  
Author(s):  
Michael G. Spelios ◽  
Lauren A. Afinowicz ◽  
Regine C. Tipon ◽  
Eitan M. Akirav

Three-dimensional (3D) pseudoislets (PIs) can be used for the study of insulin-producing β-cells in free-floating islet-like structures similar to that of primary islets. Previously, we demonstrated the ability of islet-derived endothelial cells (iECs) to induce PIs using murine insulinomas, where PI formation enhanced insulin production and glucose responsiveness. In this report, we examined the ability of iECs to spontaneously induce the formation of free-floating 3D PIs using the EndoC-βH1 human β-cell line murine MS1 iEC. Within 14 days, the coculturing of both cell types produced fully humanized EndoC-βH1 PIs with little to no contaminating murine iECs. The size and shape of these PIs were similar to primary human islets. iEC-induced PIs demonstrated reduced dysregulated insulin release under low glucose levels and higher insulin secretion in response to high glucose and exendin-4 [a glucagon-like peptide-1 (GLP-1) analog] compared with monolayer cells cultured alone. Interestingly, iEC-PIs were also better at glucose sensing in the presence of extendin-4 compared with PIs generated on a low-adhesion surface plate in the absence of iECs and showed an overall improvement in cell viability. iEC-induced PIs exhibited increased expression of key genes involved in glucose transport, glucose sensing, β-cell differentiation, and insulin processing, with a concomitant decrease in glucagon mRNA expression. The enhanced responsiveness to exendin-4 was associated with increased protein expression of GLP-1 receptor and phosphokinase A. This rapid coculture system provides an unlimited number of human PIs with improved insulin secretion and GLP-1 responsiveness for the study of β-cell biology.


1995 ◽  
Vol 128 (6) ◽  
pp. 1019-1028 ◽  
Author(s):  
K Sadoul ◽  
J Lang ◽  
C Montecucco ◽  
U Weller ◽  
R Regazzi ◽  
...  

SNAP-25 is known as a neuron specific molecule involved in the fusion of small synaptic vesicles with the presynaptic plasma membrane. By immunolocalization and Western blot analysis, it is now shown that SNAP-25 is also expressed in pancreatic endocrine cells. Botulinum neurotoxins (BoNT) A and E were used to study the role of SNAP-25 in insulin secretion. These neurotoxins inhibit transmitter release by cleaving SNAP-25 in neurons. Cells from a pancreatic B cell line (HIT) and primary rat islet cells were permeabilized with streptolysin-O to allow toxin entry. SNAP-25 was cleaved by BoNT/A and BoNT/E, resulting in a molecular mass shift of approximately 1 and 3 kD, respectively. Cleavage was accompanied by an inhibition of Ca(++)-stimulated insulin release in both cell types. In HIT cells, a concentration of 30-40 nM BoNT/E gave maximal inhibition of stimulated insulin secretion of approximately 60%, coinciding with essentially complete cleavage of SNAP-25. Half maximal effects in terms of cleavage and inhibition of insulin release were obtained at a concentration of 5-10 nM. The A type toxin showed maximal and half-maximal effects at concentrations of 4 and 2 nM, respectively. In conclusion, the results suggest a role for SNAP-25 in fusion of dense core secretory granules with the plasma membrane in an endocrine cell type- the pancreatic B cell.


2010 ◽  
Vol 299 (4) ◽  
pp. E647-E656 ◽  
Author(s):  
Elise G. Lavoie ◽  
Michel Fausther ◽  
Gilles Kauffenstein ◽  
Filip Kukulski ◽  
Beat M. Künzli ◽  
...  

Extracellular nucleotides and adenosine regulate endocrine pancreatic functions such as insulin secretion by Langerhans islet β-cells via the activation of specific P2 and P1 receptors. Membrane-bound ectonucleotidases regulate the local concentration of these ligands and consequently control the activation of their receptors. The objective of this study was to identify and localize the major ectonucleotidases, namely NTPDases and ecto-5′-nucleotidase, present in the endocrine pancreas. In addition, the potential implication of ecto-ATPase activity on insulin secretion was investigated in the rat β-cell line INS-1 (832/13). The localization of ectonucleotidase activity and protein was carried out in situ by enzyme histochemistry and immunolocalization in mouse, rat, and human pancreas sections. NTPDase1 was localized in all blood vessels and acini, and NTPDase2 was localized in capillaries of Langerhans islets and in peripheral conjunctive tissue, whereas NTPDase3 was detected in all Langerhans islet cell types. Interestingly, among the mammalian species tested, ecto-5′-nucleotidase was present only in rat Langerhans islet cells, where it was coexpressed with NTPDase3. Notably, the inhibition of NTPDase3 activity by BG0136 and NF279 facilitated insulin release from INS-1 (832/13) cells under conditions of low glycemia, probably by affecting P2 receptor activation. NTPDase3 activity also regulated the inhibitory effect of exogenous ATP in the presence of a high glucose concentration most likely by controlling adenosine production. In conclusion, all pancreatic endocrine cells express NTPDase3 that was shown to modulate insulin secretion in rat INS-1 (832/13) β-cells. Ecto-5′-nucleotidase is expressed in rat Langerhans islet cells but absent in human and mouse endocrine cells.


ChemTexts ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Sigurd Lenzen

AbstractThe biosynthesis of insulin takes place in the insulin-producing beta cells that are organized in the form of islets of Langerhans together with a few other islet cell types in the pancreas organ. The signal for glucose-induced insulin secretion is generated in two pathways in the mitochondrial metabolism of the pancreatic beta cells. These pathways are also known as the triggering pathway and the amplifying pathway. Glucokinase, the low-affinity glucose-phosphorylating enzyme in beta cell glycolysis acts as the signal-generating enzyme in this process. ATP ultimately generated is the crucial second messenger in this process. Insulin-producing pancreatic beta cells are badly protected against oxidative stress resulting in a particular vulnerability of this islet cell type due to low expression of H2O2-inactivating enzymes in various subcellular locations, specifically in the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. This is in contrast to the glucagon-producing alpha cells and other islet cell types in the islets that are well equipped with these H2O2-inactivating enzymes. On the other hand the membranes of the pancreatic beta cells are well protected against lipid peroxidation and ferroptosis through high level expression of glutathione peroxidase 4 (GPx4) and this again is at variance from the situation in the non-beta cells of the islets with a low expression level of GPx4. The weak antioxidative defence equipment of the pancreatic beta cells, in particular in states of disease, is very dangerous because the resulting particular vulnerability endangers the functionality of the beta cells, making people prone to the development of a diabetic metabolic state.


2021 ◽  
Author(s):  
Nai-Wen Chi ◽  
Travis Eisemann ◽  
Tsung-Yin J Yeh ◽  
Swati Roy ◽  
Tyler J Chi ◽  
...  

Insulin secretion in the pancreatic beta cell is rate-limited by glucokinase (GCK), the glucose sensor that catalyzes the first step of glucose metabolism. GCK consists of two lobes connected by a flexible hinge that allows the kinase to sample a spectrum of conformations ranging from the active, closed form to several inactive, less-compact forms. Activating GCK mutations can cause hyperinsulinemia and hypoglycemia in infants. A similar phenotype is exhibited in mice deficient in tankyrase (TNKS), prompting us to investigate whether TNKS might modulate the glucose-sensing function of GCK. We found that TNKS colocalizes and directly interacts with GCK. Their interaction is mediated by two ankyrin-repeat clusters (ARC-2 and -5) in TNKS and a tankyrase-binding motif (TBM, aa 63-68) in the GCK hinge. This interaction is conformation sensitive: human GCK variants that cause hyperglycemia (V62M) or hypoglycemia (S64Y) enhance or diminish the interaction respectively, even though they have no impact on TNKS interaction in the context of a GCK peptide (V62M) or a peptide library (S64Y). Moreover, the TNKS-GCK interaction is inhibited by high concentrations of glucose, which are known to stabilize GCK in the active (closed, glucose-avid) conformation. Conversely, glucose phosphorylation by GCK in vitro is inhibited by TNKS. To validate this in vitro inhibitory effect in the MIN6 beta cells, we showed that glucose-stimulated insulin secretion is suppressed upon stabilization of the TNKS protein and conversely is enhanced upon TNKS knockdown. Based on these findings as well as by contrasting with hexokinase-2, we propose that TNKS is a physiological GCK inhibitor in pancreatic beta cells that acts by trapping the kinase in an open (inactive) conformation.


2015 ◽  
Vol 54 (2) ◽  
pp. R103-R117 ◽  
Author(s):  
Talitha van der Meulen ◽  
Mark O Huising

The α and β cells act in concert to maintain blood glucose. The α cells release glucagon in response to low levels of glucose to stimulate glycogenolysis in the liver. In contrast, β cells release insulin in response to elevated levels of glucose to stimulate peripheral glucose disposal. Despite these opposing roles in glucose homeostasis, α and β cells are derived from a common progenitor and share many proteins important for glucose sensing and hormone secretion. Results from recent work have underlined these similarities between the two cell types by revealing that β-to-α as well as α-to-β transdifferentiation can take place under certain experimental circumstances. These exciting findings highlight unexpected plasticity of adult islets and offer hope of novel therapeutic paths to replenish β cells in diabetes. In this review, we focus on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 633 ◽  
Author(s):  
Haba Elabadlah ◽  
Rasheed Hameed ◽  
Crystal D’Souza ◽  
Sahar Mohsin ◽  
Ernest A. Adeghate

Ghrelin, a 28-amino acid peptide, is a strong growth hormone secretagogue and a regulator of food intake. In addition, ghrelin is thought to play a role in insulin secretion and in glucose homeostasis. A lot of contradictory data have been reported in the literature regarding the co-localization of ghrelin with other hormones in the islet of Langerhans, its role in insulin secretion and attenuation of type 2 diabetes mellitus. In this study, we investigate the effect of chronic ghrelin treatment on glucose, body weight and insulin level in normal and streptozotocin-induced diabetic male Wistar rats. We have also examined the distribution pattern and co-localization of ghrelin with insulin in pancreatic islet cells using immunohistochemistry and immune-electron microscopy and the ability of ghrelin to stimulate insulin release from the CRL11065 beta cell line. Control, non-diabetic groups received intraperitoneal injection of normal saline, while treated groups received intraperitoneal injection of 5 µg/kg body weight of ghrelin (amino acid chain 24–51) on a daily basis for a duration of four weeks. Our results show that the administration of ghrelin increases the number of insulin-secreting beta cells and serum insulin level in both normal and diabetic rats. We also demonstrated that ghrelin co-localizes with insulin in pancreatic islet cells and that the pattern of ghrelin distribution is altered after the onset of diabetes. Moreover, ghrelin at a dose of 10−6 M and 10−12 M increased insulin release from the CRL11065 beta cell line. In summary, ghrelin co-localizes with insulin in the secretory granules of pancreatic beta cells and enhances insulin production.


2000 ◽  
Vol 164 (2) ◽  
pp. 139-147 ◽  
Author(s):  
SJ Conroy ◽  
YH Abdel-Wahab ◽  
EM Caraher ◽  
PM Byrne ◽  
E Murphy ◽  
...  

There are conflicting reports on the effect of serum from patients with insulin-dependent diabetes mellitus (IDDM) or normal human serum on beta-cell function and insulin secretion. Here, we report that the sera of newly diagnosed IDDM patients potently suppresses insulin secretion from a clonal rat pancreatic beta-cell line (BRIN-BD11), but do not alter cell viability. Indeed, the viability of the beta-cells was not significantly different between cells cultured in 10% (v/v) IDDM sera, normal human sera, or fetal calf serum after 24, 48 and 72 h. Alanine-stimulated insulin secretion from cells cultured for 24 h in (10% v/v) IDDM patient sera was reduced to 48% of that secreted from cells cultured in (10% v/v) normal human sera. After depletion of the complement components C1q and C3, the inhibition of insulin secretion induced by IDDM patient sera was significantly reversed (no significant difference was observed between cells cultured in complement-depleted IDDM patient sera and cells cultured in normal human sera or complement-depleted normal human sera). The concentration of glutamic acid decarboxylase (GAD) autoantibodies was markedly increased in the sera of six out of nine newly diagnosed IDDM patients in this study, whereas insulin auto-antibodies (IAA) were detected in the sera of three of the nine patients and islet-cell antibodies (ICA) in the sera of five of them. In addition, the concentration of soluble terminal complement complexes (SC5-9) was greater in some of the beta-cell culture media samples after 24 h incubation when the incubation medium was supplemented with IDDM patient sera than when supplementation was with normal human sera. We propose that the mechanism of sera-induced inhibition of insulin secretion from clonal beta-cells may involve complement- and cytokine-stimulated intracellular events that attenuate the metabolite-induced secretory process.


1986 ◽  
Vol 239 (1) ◽  
pp. 199-204 ◽  
Author(s):  
P Lindström ◽  
J Sehlin

Microdissected beta-cell-rich pancreatic islets of ob/ob mice were used in studies of the relationship between intracellular pH (pHi) and 45Ca2+ uptake and insulin release. Stepwise increases in extracellular pH (pHo) from 6.80 to 8.00 resulted in a parallel, although less pronounced, elevation of pHi from 7.24 to 7.69. Experimental conditions that alkalinize the islet cell interior, i.e. addition of 5 mM-NH4+, sudden withdrawal of extracellular bicarbonate buffer or increase in pHo, induced insulin secretion in the absence of other types of secretory stimulation (1 mM-D-glucose). Intracellular acidification by lowering pHo below 7.40 or sudden addition of bicarbonate buffer did not induce insulin secretion. The removal of extracellular bicarbonate buffer, increase in pHo from 7.40 to 8.00, or the addition of 5 mM-L-5-hydroxytryptophan or 5 mM-NH4+, which all alkalinize the islet cells and induce insulin secretion, also increased the La3+-non-displaceable 45Ca2+ uptake in the presence of 1 mM-D-glucose. The results suggest that intracellular alkalinization in beta-cells can trigger insulin secretion. Taken together with the fact that D-glucose increases pHi in the islet cells, the results also point to the possibility that alkalinization may be a link in the stimulus-secretion coupling sequence in beta-cells.


Sign in / Sign up

Export Citation Format

Share Document