scholarly journals The inflammatory changes of adipose tissue in late pregnant mice

2011 ◽  
Vol 47 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Lingyun Zhang ◽  
Takashi Sugiyama ◽  
Nao Murabayashi ◽  
Takashi Umekawa ◽  
Ning Ma ◽  
...  

The infiltration of classically activated macrophages (M1) and alternatively activated macrophages (M2) in subcutaneous adipose tissue (SAT) and parametrial adipose tissue (PAT) was analyzed to investigate whether local inflammatory change in adipose tissue occurs in late pregnancy. C57BL/6N female mice at 6 weeks of age were fed a normal chow diet for 4 weeks prior to mating at 10 weeks of age and were sampled on day 17 of pregnancy. The serum levels of adipokines and biochemical markers were measured using ELISA and enzymatic methods. The identification of M1 and M2 was analyzed by double immunofluorescence with anti-F4/80 and anti-CD11c antibodies. The gene expression of adipokines in adipose tissues was analyzed by quantitative RT-PCR. The pregnant group showed adipocyte hypertrophy, higher macrophage infiltration, and higher M1/M2 in both SAT and PAT compared with the non-pregnant (NP) group. Serum levels of free fatty acids, tumor necrosis factor α (TNFα), interleukin 6 (IL6), and IL10 were higher, and serum levels of adiponectin were lower in the pregnant group than those in the NP group. The gene expressions of CD68, Itgax, CCR2, TNFα, and PAI1 in SAT during pregnancy were significantly higher than those in the NP group, as were the gene expressions of CD68, Emrl, Itgax, MCP1, TNFα, IL6, PAI1, adiponectin, and IL10 in PAT. These results suggest that the low-grade inflammation of adipose tissue indicated by increased macrophage infiltration occurs in late normal pregnancy.

2017 ◽  
Vol 23 (5) ◽  
pp. 623-630 ◽  
Author(s):  
Katrin Fischer ◽  
Henry H Ruiz ◽  
Kevin Jhun ◽  
Brian Finan ◽  
Douglas J Oberlin ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cláudio A. Cunha ◽  
Fábio S. Lira ◽  
José C. Rosa Neto ◽  
Gustavo D. Pimentel ◽  
Gabriel I. H. Souza ◽  
...  

The aim of this study was to evaluate the effects of green teaCamellia sinensisextract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water); CG (chow diet and water + green tea extract); HW (high-fat diet and water); HG (high-fat diet and water + green tea extract). The mice were fedad libitumwith chow or high-fat diet and concomitantly supplemented (oral gavage) with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.). The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFαlevels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1209-1209
Author(s):  
Hanna Davis ◽  
Mandana Pahlavani ◽  
Yujiao Zu ◽  
Latha Ramalingam ◽  
Shane Scoggin ◽  
...  

Abstract Objectives Obesity is a global epidemic and complex disease associated with an expansion of white adipose tissue (WAT). Obesity is accompanied by chronic low-grade inflammation, characterized by elevated levels of secreted pro-inflammatory cytokines and M1 macrophage infiltration into WAT. Eicosapentaenoic acid (EPA), a long-chain omega-3 polyunsaturated fatty acid, has been reported to have anti-obesity and anti-inflammatory properties. Moreover, we previously showed that EPA dose-dependently improved glucose intolerance, and inflammation in diet-induced obese mice. The objective of this study is to further determine mechanisms underlying these metabolic protective effects of EPA in epididymal WAT (e-WAT). Methods Male B6 mice were fed a HF diet (45% kcal fat) or a HF diet supplemented with 9, 18, or 36 g/kg of EPA-enriched fish oil (EPA 9, 18 or 36) for 14 weeks. We performed histological assessments in eWAT to determine adipocyte size; and measure macrophage infiltration by immunohistochemistry using galectin-3. RNA was isolated from eWAT for RNA sequencing and gene expression analyses. Data were analyzed using GraphPad Prism software. Results EPA36-fed mice had significantly lower body weight and fat percentage, compared to HF (P < 0.05). In addition, EPA18 and 36 significantly decreased weight of e-WAT (P < 0.05) and increased glucose clearance compared to HF (P < 0.05). Moreover, all EPA doses had smaller adipocytes (P < 0.05). Compared to HF, EPA18 and 36 significantly reduced macrophage infiltration in e-7.43 fold, respectively. Consistent with these changes, EPA18 and 36 reduced the mRNA levels of HF-induced inflammatory markers, including arachidonate 5-lipoxygenase (Alox5) and leukotriene B4 receptor (Ltb4r) compared to HF (P < 0.05). RNA Seq analyses revealed that EPA18 attenuated HF-induced inflammation in part by up-regulating cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathways and down-regulating triggering receptor expressed on myeloid cells 1 (TREM1) signaling. Conclusions EPA dose-dependently ameliorated HF-induced obesity and inflammation by reducing adipocyte size and macrophage infiltration and modulating pro- and anti-inflammatory pathways in e-WAT. These effects were achieved at human equivalent doses, that are currently prescribed for reducing triglycerides. Funding Sources USDA NIFA NIH.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junling Yang ◽  
Ken-Ichiro Fukuchi

Obesity significantly increases the risk of developing type 2 diabetes mellitus and other metabolic diseases. Obesity is associated with chronic low-grade inflammation in white adipose tissues, which is thought to play an essential role in developing insulin resistance. Many lines of evidence indicate that toll-like receptors (TLRs) and their downstream signaling pathways are involved in development of chronic low-grade inflammation and insulin resistance, which are associated with obesity. Mice lacking molecules positively involved in the TLR signaling pathways are generally protected from high-fat diet-induced inflammation and insulin resistance. In this study, we have determined the effects of genetic deficiency of toll/interleukin-1 receptor-domain-containing adaptor-inducing interferon-β (TRIF) on food intake, bodyweight, glucose metabolism, adipose tissue macrophage polarization, and insulin signaling in normal chow diet-fed mice to investigate the role of the TRIF-dependent TLR signaling in adipose tissue metabolism and inflammation. TRIF deficiency (TRIF−/−) increased food intake and bodyweight. The significant increase in bodyweight in TRIF−/− mice was discernible as early as 24 weeks of age and sustained thereafter. TRIF−/− mice showed impaired glucose tolerance in glucose tolerance tests, but their insulin tolerance tests were similar to those in TRIF+/+ mice. Although no difference was found in the epididymal adipose mass between the two groups, the percentage of CD206+ M2 macrophages in epididymal adipose tissue decreased in TRIF−/− mice compared with those in TRIF+/+ mice. Furthermore, activation of epididymal adipose AKT in response to insulin stimulation was remarkably diminished in TRIF−/− mice compared with TRIF+/+ mice. Our results indicate that the TRIF-dependent TLR signaling contributes to maintaining insulin/AKT signaling and M2 macrophages in epididymal adipose tissue under a normal chow diet and provide new evidence that TLR4-targeted therapies for type 2 diabetes require caution.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 123 ◽  
Author(s):  
Ignacio Ara ◽  
Pernille Auerbach ◽  
Steen Larsen ◽  
Esmeralda Mata ◽  
Bente Stallknecht ◽  
...  

Macrophage infiltration in two subcutaneous adipose tissue depots and systemic low-grade inflammation were studied in post-obese (PO), obese (O), and control (C) subjects. Young males were recruited into PO: (n = 10, weight-loss avg. 26%, BMI: 26.6 ± 0.7, mean ±SEM kg/m2), O: (n = 10, BMI: 33.8 ± 1.0kg/m2) and C: (n = 10, BMI: 26.6 ± 0.6 kg/m2). PO and C were matched by BMI. Blood and abdominal and gluteal subcutaneous adipose tissue were obtained in the overnight fasted state. Plasma concentrations of IL-6 and CRP were higher (p < 0.05) in O than in PO and C, TNF-α was higher (p < 0.05) only in O compared to PO and IL-18 was similar between groups. The number of CD68+ macrophages was higher (p < 0.05) in the gluteal than the abdominal depot, and higher (p < 0.05) in O and PO compared to C in both depots. The content of CD163+ macrophages was similar between depots but was higher (p < 0.05) in PO compared to C and O in the gluteal depot. In post obese men with a long-term sustained weight loss, systemic low-grade inflammation was similar to non-obese controls despite a higher subcutaneous adipose tissue CD68+ macrophage content. Interestingly, the anti-inflammatory CD163+ macrophage adipose tissue content was consistently higher in post obese than obese and controls.


2019 ◽  
Vol 269 (3) ◽  
pp. 554-563 ◽  
Author(s):  
Abdikarim Abdullahi ◽  
Christopher Auger ◽  
Mile Stanojcic ◽  
David Patsouris ◽  
Alexandra Parousis ◽  
...  

2016 ◽  
Vol 50 (3) ◽  
pp. 137-144 ◽  
Author(s):  
P. Vargovic ◽  
G. Manz ◽  
R. Kvetnansky

Abstract Objective. Continuous exposure to cold leads to an activation of adaptive thermogenesis in the brown adipose tissue and induction of brown/beige cell phenotype in the white adipose tissue. Thermogenic response is associated with alternatively activated macrophages producing catecholamines, which subsequently activate the uncoupling protein 1 (UCP-1). The aim of this work was to elucidate the effect of cold exposure on catecholamine and immune responses associated with adipocyte browning in the mesenteric adipose tissue (mWAT) of rat. Methods. The rats were exposed to continuous cold (4 °C) for 1 or 7 days. Catecholamines production and gene expressions of inflammatory and other factors, related to adipocyte “browning”, were analyzed in the homogenized mWAT samples using 2-CAT ELISA kits. Results. Cold exposure induced a sympathetic response in the mWAT, evidenced by the tyrosine hydroxylase (TH) protein level rise. Induction of non-sympathetical catecholamine production was observed 7 days after cold exposure by elevated TH and phenylethanolamine-N-methyltransferase (PNMT) expression, leading to an increased epinephrine levels. Cold exposure for 7 days stimulated the infiltration of macrophages, evaluated by F4/80 and CD68 expressions, and expression of anti-inflammatory mediators, while pro-inflammatory cytokines were inhibited. Anti- inflammatory response, accompanied by de novo catecholamine production and up-regulation of β3-adrenergic receptors, led to the stimulation of UCP-1 and PGC1α expression, suggesting a cold-induced “browning” of the mWAT, mediated by alternatively activated macrophages. Conclusions. The present data indicate that prolonged cold exposure may induce anti-inflammatory response in mWAT associated with induction of UCP-1 expression. Although functional thermogenesis in the mWAT is most likely redundant, a highly efficient dissipation of energy by UCP1 may affect the energy homeostasis in this visceral fat.


Sign in / Sign up

Export Citation Format

Share Document