scholarly journals Histone demethylase LSD1 deficiency and biological sex: impact on blood pressure and aldosterone production

2019 ◽  
Vol 240 (2) ◽  
pp. 111-122 ◽  
Author(s):  
Yuefei Huang ◽  
Pei Yee Ting ◽  
Tham M Yao ◽  
Tsuyoshi Homma ◽  
Danielle Brooks ◽  
...  

Human risk allele carriers of lysine-specific demethylase 1 (LSD1) and LSD1-deficient mice have salt-sensitive hypertension for unclear reasons. We hypothesized that LSD1 deficiency causes dysregulation of aldosterone’s response to salt intake resulting in increased cardiovascular risk factors (blood pressure and microalbumin). Furthermore, we determined the effect of biological sex on these potential abnormalities. To test our hypotheses, LSD1 male and female heterozygote-knockout (LSD1+/−) and WT mice were assigned to two age groups: 18 weeks and 36 weeks. Plasma aldosterone levels and aldosterone production from zona glomerulosa cells studied ex vivo were greater in both male and female LSD1+/− mice consuming a liberal salt diet as compared to WT mice consuming the same diet. However, salt-sensitive blood pressure elevation and increased microalbuminuria were only observed in male LSD1+/− mice. These data suggest that LSD1 interacts with aldosterone’s secretory response to salt intake. Lack of LSD1 causes inappropriate aldosterone production on a liberal salt diet; males appear to be more sensitive to this aldosterone increase as males, but not females, develop salt sensitivity of blood pressure and increased microalbuminuria. The mechanism responsible for the cardiovascular protective effect in females is uncertain but may be related to estrogen modulating the effect of mineralocorticoid receptor activation.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Yuefei Huang ◽  
Tham M Yao ◽  
Paul Loutraris ◽  
Isis K Rangel ◽  
Pei Yee Ting ◽  
...  

Lysine-Specific Demethylase1 (LSD1) is an epigenetic factor modulated by salt intake. Previously, we documented the male heterozygote LSD1 knockout mice (LSD1+/-) had dysregulation of aldosterone (ALDO) production on a liberal salt diet (1.6% Na+) associated with salt-sensitive hypertension. This study assessed if: 1) female LSD1+/- mice have a similar phenotype; and 2) the effect of aging on this phenotype. Methods: Female LSD1+/- and wild type mice (LSD1+/+) were randomly assigned for sacrifice at the ages of 18-week, 52-week, and 75-week and the following were assessed at each time point: blood pressure (BP); plasma renin activity (PRA) and ALDO; urine albumin; and ex vivo ALDO production from isolated adrenal zona glomerulosa cells. Results: BP and urine albumin in the LSD1+/- compared to the LSD1+/+ were not different at any age (Table). However, the LSD1+/- had greater ALDO/PRA ratios at 18 weeks compared with the LSD1+/+, but lower ALDO levels and ex vivo ALDO production at 52 and 75 weeks. Associated with this phenotype, the LSD1+/- showed significantly higher rate of all-cause mortality than the LSD1+/+. Conclusion: Lack of LSD1 caused dysregulation of ALDO production in both male and female mice. But the cardiovascular outcomes are different. The LSD1+/- females in contrast to males do not develop hypertension or albuminuria even at 75 weeks of age. However, the females do die at a faster rate than the males of a variety of causes. Thus, there is considerable sexual dimorphism in the pathogenesis of cardiovascular outcomes associated with dysregulation of adrenal ALDO production mediated by lack of LSD1.


2021 ◽  
Author(s):  
Shadi K Gholami ◽  
Chee Sin Tay ◽  
Jessica M Lee ◽  
Eleanor Zagoren ◽  
Stephen A Maris ◽  
...  

Inconsistencies have been reported on the effect of sex on aldosterone levels leading to clinical confusion. The reasons for these inconsistencies, are uncertain but include: estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and aldosterone secretagogues’ levels. This study’s goal was to determine whether aldosterone’s biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity (PRA) and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex-vivo areas:1) activity/levels of early steps in aldosterone’s biosynthesis (StAR and CYP11A1); 2) activity/levels of a late step (CYP11B2); and 3) the status of the MR mediated, ultrashort-feedback-loop. Females had higher expression of CYP11A1 and StAR; and increased CYP11A1 activity (increased pregnenolone/ corticosterone levels) but did not differ in CYP11B2 expression or activity (aldosterone/ levels). Activating the ZG’s MR (thereby activating the ultrashort-feedback-loop) reduced CYP11B2’s activity similarly in both sexes. Ex-vivo, these molecular effects were accompanied, in females, by lower aldosterone basally but higher aldosterone with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of aldosterone’s biosynthesis, but also these differences at the molecular level, help explain the variable reports on aldosterone’s circulating levels. Basally, both in-vivo and ex-vivo, males had higher aldosterone levels, likely secondary to higher aldosterone secretagogue levels. However, in response to acute stimulation, aldosterone levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Eric J Belin de Chantemele

Recent studies by our group demonstrated that leptin is a direct regulator of aldosterone secretion and increases blood pressure via sex-specific mechanisms involving leptin-mediated activation of the aldosterone-mineralocorticoid receptor signaling pathway in females and sympatho-activation in males. Although it is well accepted that females secrete more leptin and aldosterone than males, it is unknown whether leptin infusion raises blood pressure similarly in male and female mice and whether higher aldosterone levels sensitize females to salt-induced hypertension. We hypothesized that female mice would be more sensitive to leptin than males and also have a potentiated blood pressure rise in response to high salt diet compared to males. Male and female Balb/C mice were implanted with radiotelemeters for continuous measurement of mean arterial pressure (MAP) at 10 weeks of age. MAP was measured for seven days prior to feeding with a high-salt diet (HS, 4%NaCl) for seven days. Following a recovery period, animals were then implanted with osmotic minipumps containing leptin (0.9mg/kg/day) recorded for seven days. Baseline MAP was similar between males and females (101.3±2.9 vs 99.3±3.7 mmHg, n=4 and 5, respectively), however, HS diet resulted in a greater MAP increase in females (15.0±2.6 mmHg) compared to males (3.1±4.5 mmHg, P<0.05). MAP with leptin treatment was increased with leptin in females moreso than in males, however, this did not reach significance (6.8±5.8 vs 1.8±5.9 mmHg, respectively). This potential sex difference in blood pressure responses to leptin was not associated with changes in body weight (0.07±0.44 vs -0.22±0.2 g, respectively) nor changes in blood glucose (-19.67±15.06 vs -15.4±11.4 mg/dl, respectively) in males and females in response to leptin. In summary, female mice are more sensitive to HS diet-induced blood pressure increases than males. Females may be more sensitive to leptin-mediated blood pressure increases than males. Further investigation is needed to determine whether these sex differences in blood pressure responses to HS diet and leptin are mediated by aldosterone or other mechanisms.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1725 ◽  
Author(s):  
Kevin D. Cashman ◽  
Sorcha Kenny ◽  
Joseph P. Kerry ◽  
Fanny Leenhardt ◽  
Elke K. Arendt

Reformulation of bread in terms of salt content remains an important measure to help achieve a reduction in salt intake in the population and for the prevention of hypertension and elevated blood pressure (BP). Our fundamental studies on the reduction of salt on dough and bread characteristics showed that wheat breads produced with 0.3 g salt/100 g (“low-salt”) were found to be comparable quality to that produced with the typical level of salt (1.2%). This food-based intervention trial examined, using a 5 week cross-over design, the potential for inclusion of “low-salt” bread as part of a pragmatic reduced-salt diet on BP, markers of bone metabolism, and plasma lipids in 97 adults with slightly to moderately elevated BP. Assuming all sodium from dietary intake was excreted through the urine, the intake of salt decreased by 1.7 g/day, on average, during the reduced-salt dietary period. Systolic BP was significantly lower (by 3.3 mmHg on average; p < 0.0001) during the reduced-salt dietary period compared to the usual-salt dietary period, but there was no significant difference (p = 0.81) in diastolic BP. There were no significant differences (p > 0.12, in all cases) in any of the urinary- or serum-based biochemical indices of calcium or bone metabolism or in plasma lipids between the two periods. In conclusion, a modest reduction in dietary salt intake, in which the use of “low-salt” (i.e., 0.3 g/100g) bread played a key role along with dietary advice, and led to a significant, and clinically meaningful, decrease in systolic, but not diastolic, BP in adults with mildly to moderately elevated BP.


1998 ◽  
Vol 275 (2) ◽  
pp. R410-R417 ◽  
Author(s):  
Atsushi Sakima ◽  
Hiroshi Teruya ◽  
Masanobu Yamazato ◽  
Rijiko Matayoshi ◽  
Hiromi Muratani ◽  
...  

Systemic inhibition of nitric oxide synthase (NOS) evokes hypertension, which is enhanced by salt loading, partly via augmented sympathetic activity. We investigated whether inhibition of brain NOS elevates blood pressure (BP) in normotensive rats and, if so, whether the BP elevation is enhanced by salt loading. After a 2-wk low-salt (0.3%) diet, male Sprague-Dawley (SD) rats were divided into four groups. Groups 1 and 2 received a chronic intracerebroventricular infusion of 0.5 mg ⋅ kg−1 ⋅ day−1of N G-monomethyl-l-arginine (l-NMMA), and groups 3 and 4 were given artificial cerebrospinal fluid (aCSF). Groups 1 and 3 were placed on a high-salt (8%) diet, whereas groups 2 and 4 were on a low-salt diet. On day 9or 10, group 1 showed significantly higher mean arterial pressure (MAP) in a conscious unrestrained state (129 ± 3 mmHg vs. 114 ± 3, 113 ± 1, and 108 ± 3 mmHg in groups 2, 3, and 4, respectively, P < 0.05). On a high-salt diet, response of renal sympathetic nerve activity but not of BP to air-jet stress was significantly larger in rats givenl-NMMA than in rats given aCSF (29 ± 4% vs. 19 ± 3%, P < 0.05). When the intracerebroventricular infusions were continued for 3 wk, MAP was significantly higher in rats givenl-NMMA than in rats given aCSF irrespective of salt intake, although the difference was ∼7 mmHg. Thus chronic inhibition of NOS in the brain only slightly elevates BP in SD rats. Salt loading causes a more rapid rise in BP. The mechanisms of the BP elevation and its acceleration by salt loading remain to be elucidated.


2020 ◽  
Vol 98 (9) ◽  
pp. 1287-1299
Author(s):  
Andy W. C. Man ◽  
Min Chen ◽  
Yawen Zhou ◽  
Zhixiong Wu ◽  
Gisela Reifenberg ◽  
...  

Abstract Preeclampsia is a common medical condition during pregnancy and a major cause of maternal and prenatal mortality. The present study was conducted to investigate the effects of maternal treatment with pentaerythritol tetranitrate (PETN) in Dahl salt-sensitive rats (DSSR), a model of superimposed preeclampsia. F0 parental DSSR were treated with PETN (50 mg/kg) from the time point of mating to the end of lactation. Maternal PETN treatment improved fetal growth and had no effect on blood pressure in DSSR offspring fed with normal chow or high-salt diet. Upon high-fat diet (HFD) feeding, offspring from PETN-treated mother showed improved glucose tolerance despite similar weight gain. Unexpectedly, maternal PETN treatment significantly potentiated the HFD-induced blood pressure elevation in male DSSR offspring. Endothelium-derived hyperpolarization factor (EDHF)-mediated vasodilation was similar between NCD-fed and HFD-fed control offspring but was markedly reduced in HFD-fed PETN offspring. EDHF genes were downregulated in the vasculature of HFD-fed PETN offspring, which was associated with epigenetic changes in histone modifications. In conclusion, maternal PETN treatment in DSSR shows both beneficial and unfavorable effects. It improves fetal growth and ameliorates glucose tolerance in the offspring. Although maternal PETN treatment has no effect on blood pressure in offspring fed with normal chow or high-salt diet, the offspring is at higher risk to develop HFD-induced hypertension. PETN may potentiate the blood pressure response to HFD by epigenetic modifications of EDHF genes. Key messages The core findings of this article suggest that maternal PETN treatment of DSSR, a rat model of a spontaneous superimposed preeclampsia, leads to • Improvement of fetal growth; • No changes of maternal blood pressure or markers of preeclampsia; • Amelioration of HFD-induced glucose intolerance in adult offspring; • No changes in blood pressure development of the offspring on normal chow or high salt-diet; • Potentiation of blood pressure elevation of the offspring on HFD.


2015 ◽  
Vol 308 (5) ◽  
pp. H530-H539 ◽  
Author(s):  
Koji Ito ◽  
Yoshitaka Hirooka ◽  
Kenji Sunagawa

The cardiac sympathetic afferent (CSA), which plays an important role in heart-brain communication for sympathoexcitation, is stimulated in heart failure. Additionally, high salt intake leads to further sympathoexcitation due to activation of hypothalamic epithelial Na+ channels (ENaCs) in heart failure. In the present study, we stimulated the CSA in adult male mice by epicardial application of capsaicin and using ethanol as a control to determine whether CSA stimulation led to activation of hypothalamic ENaCs, resulting in salt-induced sympathoexcitation. Three days after capsaicin treatment, an upregulation of hypothalamic α-ENaCs, without activation of mineralocorticoid receptors, was observed. We also examined expression levels of the known ENaC activator TNF-α. Hypothalamic TNF-α increased in capsaicin-treated mice, whereas intracerebroventricular infusion of the TNF-α blocker etanercept prevented capsaicin-induced upregulation of α-ENaCs. To examine brain arterial pressure (AP) sensitivity toward Na+, we performed an intracerebroventricular infusion of high Na+-containing (0.2 M) artificial cerebrospinal fluid. AP and heart rate were significantly increased in capsaicin-treated mice compared with control mice. CSA stimulation also caused excitatory responses with high salt intake. Compared with a regular salt diet, the high-salt diet augmented AP, heart rate, and 24-h urinary norepinephrine excretion, which is an indirect marker of sympathetic activity with mineralocorticoid receptor activation, in capsaicin-treated mice but not in ethanol-treated mice. Treatment with etanercept or the ENaC blocker benzamil prevented these salt-induced excitatory responses. In summary, we show that CSA stimulation leads to an upregulation of hypothalamic α-ENaCs mediated via an increase in TNF-α and results in increased salt sensitivity.


2005 ◽  
Vol 288 (4) ◽  
pp. F810-F815 ◽  
Author(s):  
Laura L. Howard ◽  
Matthew E. Patterson ◽  
John J. Mullins ◽  
Kenneth D. Mitchell

Transient exposure to ANG II results in the development of salt-sensitive hypertension in rats. This study was performed to determine whether a transient hypertensive episode can induce salt-sensitive hypertension in transgenic rats with inducible expression of the mouse Ren2 renin gene [strain name TGR(Cyp1a1-Ren2)]. Systolic blood pressures were measured in conscious male Cyp1a1-Ren2 rats ( n = 6) during control conditions and during dietary administration of indole-3-carbinol (I3C; 0.15%, wt/wt), for 14 days. Systolic pressure increased from 135 ± 5 to 233 ± 7 mmHg by day 14. I3C administration was terminated and blood pressure returned to normal levels (137 ± 5 mmHg) within 10 days. Subsequently, the rats were placed on a high-salt diet (8% NaCl) for 10 days. Systolic pressure increased by 34 ± 2 mmHg throughout 10 days of the high-salt diet. Neither glomerular filtration rate nor renal plasma flow was altered in Cyp1a1-Ren2 rats with salt-sensitive hypertension. In a separate group of male Cyp1a1-Ren2 rats ( n = 6) transiently induced with 0.15% I3C for 14 days, administration of the superoxide dismutase mimetic tempol (4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl, 2 mM) attenuated the increase in systolic pressure induced by high salt. Systolic pressure increased by only 11 ± 1 mmHg throughout 8 days of a high-salt diet and tempol administration. Thus transient induction of ANG II-dependent hypertension via activation of the Cyp1a1-Ren2 transgene induces salt-sensitive hypertension in these transgenic rats. The attenuation by tempol of the high salt-induced blood pressure elevation indicates that ANG II-induced production of superoxide anion contributes to the development of salt-sensitive hypertension after transient induction of ANG II-dependent hypertension.


2020 ◽  
Author(s):  
Qiong Ma ◽  
Chao Chu ◽  
Yanbo Xue ◽  
Yu Yan ◽  
Jiawen Hu ◽  
...  

Abstract Background: Salt is a crucial factor for blood pressure modulation, especially in salt-sensitive individuals. Sphingosine-1-phosphate (S1P), a pleiotropic bioactive sphingolipid metabolite participating in blood pressure regulation, has recently been identified as a novel lipid diuretic factor. However, the relationships among salt intake, circulating S1P levels, and blood pressure changes in human beings are unknown. Thus, we conducted this intervention trial to explore the effect of dietary salt intake on plasma S1P levels and to examine the relationship between S1P and blood pressure in Chinese adults.Methods: 42 participants (aged 18–65 years) were recruited from a rural community in Shaanxi, China. All participants first maintained their normal diet for 3 days, then sequentially ate a low-sodium diet (3.0 g/day NaCl) for 7 days, followed by a high-sodium diet (18.0 g/day NaCl) for 7 days. We assessed their plasma S1P concentrations on the last day of each intervention phase by liquid chromatography-tandem mass spectrometry. We classified the subjects who demonstrated at least a 10% increase in mean arterial pressure upon transitioning from a low-salt to a high-salt diet as salt-sensitive and the others as salt-resistant. Differences in repeated measures were analyzed by repeated-measures analysis of variance. Results: Plasma S1P levels decreased significantly from the baseline to low-salt diet period and increased from the low-salt to high-salt diet period. We observed this response in both salt-sensitive and salt-resistant individuals. Plasma S1P levels positively correlated with 24-hour urinary sodium excretion, but not 24-hour urinary potassium excretion. In line with plasma S1P level responses to salt intervention, systolic blood pressure (SBP) and mean arterial pressure (MAP) decreased from the baseline to low-salt diet period and increased from the low-salt to high-salt period. SBP positively correlated with plasma S1P and the correlation was stronger in salt-sensitive individuals than that in salt-resistant individuals. Conclusion: Low-salt dietary intervention decreases plasma S1P levels, whereas high-salt intervention reverses this change and S1P levels positively correlated with SBP in Chinese adults. This provides a high-efficiency and low-cost intervention for plasma S1P levels modulation, with implications for salt-induced blood pressure modulation. Trial registration: NCT02915315. Registered 27 September 2016, http://www.clinicaltrials.gov


2021 ◽  
Author(s):  
Pablo Nakagawa ◽  
Javier Gomez ◽  
Ko-Ting Lu ◽  
Justin L. Grobe ◽  
Curt D. Sigmund

AbstractExcessive sodium intake is known to increase the risk for hypertension, heart disease, and stroke. Individuals who are more susceptible to the effects of high salt are at higher risk for cardiovascular diseases even independent of their blood pressure status. Local activation of the renin-angiotensin system (RAS) in the brain, among other mechanisms, has been hypothesized to play a key role in contributing to salt balance. We have previously shown that deletion of the alternative renin isoform termed renin-b disinhibits the classical renin-a encoding preprorenin in the brain resulting in elevated brain RAS activity. Thus, we hypothesized that renin-b deficiency results in higher susceptibility to salt-induced elevation in blood pressure. Telemetry implanted Ren-bNull and wildtype littermate mice were first offered a low salt diet for a week and subsequently a high salt diet for another week. A high salt diet induced a mild blood pressure elevation in both Ren-bNull and wildtype mice, but mice lacking renin-b did not exhibit an exaggerated pressor response. When renin-b deficient mice were exposed to a high salt diet for a longer duration (4 weeks), was a trend for increased myocardial enlargement in Ren-bNull mice when compared with control mice. Multiple studies have also demonstrated the association of chronic and acute environmental stress with hypertension. Activation of the RAS in the rostral ventrolateral medulla and the hypothalamus is required for stress-induced hypertension. Thus, we next questioned whether the lack of renin-b would result in exacerbated response to an acute restraint-stress. Wildtype and Ren-bNull mice equally exhibited elevated blood pressure in response to restraint-stress, which was similar in mice fed either a low or high salt diet. These studies highlight a complex mechanism that masks/unmasks roles for renin-b in cardiovascular physiology.


Sign in / Sign up

Export Citation Format

Share Document