scholarly journals Caput epididymitis but not orchitis was induced by vasectomy in a murine model of experimental autoimmune orchitis

Reproduction ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 859-866 ◽  
Author(s):  
Ning Qu ◽  
Hayato Terayama ◽  
Munekazu Naito ◽  
Yuki Ogawa ◽  
Shuichi Hirai ◽  
...  

Immunization of mice with viable syngeneic testicular germ cells (TGC) alone can induce autoimmune responses against autoantigens of both round and elongating spermatids, resulting in the development of experimental autoimmune orchitis (EAO). Histological lesions in this EAO model without an adjuvant are characterized by lymphocytic infiltration into the testes, spermatogenic disturbance, and a complete lack of epididymitis. In this study, we investigated the effects of vasectomy (Vx) on TGC-induced EAO expecting that Vx augments the severity of testicular inflammation in A/J mice. The results showed that mice receiving Vx alone exhibited no significant inflammatory cell response in either the testes or epididymides, and mice receiving shamVx+TGC immunization had EAO with no epididymitis. In sharp contrast, no EAO was found in the testes of any mice receiving Vx+TGC immunization. Instead, caput epididymitis involving CD4+T cells, CD8+T cells, B cells, and macrophages were induced in them with striking elevation of the tissue levels of bothIL6andIL10mRNA. Furthermore, serum autoantibodies induced by shamVx+TGC immunization were reactive with both round (immature) and elongating (mature) spermatids; however, those induced by Vx+TGC immunization were specific to acrosomes of mature spermatids and spermatozoa. These unexpected results indicate that Vx may induce the mode by which autoreactive lymphocytes gain access to TGC autoantigens in the epididymides, leading to autoimmune responses against the autoantigens of mature rather than immature spermatids.

Pneumologie ◽  
2007 ◽  
Vol 61 (01) ◽  
Author(s):  
JH Maxeiner ◽  
R Karwot ◽  
K Sauer ◽  
P Scholtes ◽  
R Wiewrodt ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A788-A788
Author(s):  
Xiuning Le ◽  
Minghao Dang ◽  
Venkatesh Hegde ◽  
Bo Jiang ◽  
Ravaen Slay ◽  
...  

BackgroundHuman papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HPV+ HNSCC) is a disease that has moderate response to anti-PD-1/L1 immune checkpoint blockade, with the response rates less than 20% and median progression-free survival less than 3 months. A greater understanding of tumor intrinsic and extrinsic factors that restrict anti-tumor immunity in the tumor immune microenvironment (TIME) is needed to identify other immune checkpoints to enhance therapeutic efficacy.MethodsTwo cohorts (TCGA n=72 and a separate cohort n=84) of surgically resected, treatment-naïve HPV+ HNSCC with RNA-seq were analyzed to understand the immune features. In addition, single-cell RNA-seq and TCR-seq were performed on 18 cases to further delineate the immune molecules' interactions. An immune-competent murine HPV+ HNSCC model was used to preliminarily evaluate the therapeutic efficacy.ResultsIn two bulk-sequenced HPV+ HNSCC cohorts, TIGIT ligands PVR and NECTIN2 were found to associate with an epithelial-to-mesenchymal gene expression signature, suppression of IFNα and IFNγ signaling, a stromal-enriched or immune-excluded TIME, and poor survival. Single-cell RNA-seq of over 72,000 cells of HPV+ HNSCC revealed that the PVR/NECTIN ligand TIGIT was highly prevalent in T-cells (34%), significantly higher than PD1- (20%, p<0.01). There is an enrichment of cell-cell interactions mediated by TIGIT-PVR/NECTIN2 in the TIME of HPV+HNSCC versus normal tonsil. TIGIT was the most differentially upregulated immune checkpoint on clonally expanded CD8+T-cells and was abundant on antigen-experienced, tissue-resident memory CD8+T-cell and T-regulatory subsets. TIGIT ligands PVR, NECTIN1, and NECTIN2 were abundant on mature regulatory dendritic cells (DCs), immunosuppressive plasmacytoid (p)DCs, and macrophages, respectively. TIGIT and PD-1 co-blockade in the mEER syngeneic murine model significantly reduced tumor growth, improved survival, restored effector function of HPV16E7-specific CD8+T cells, natural killer cells, and DCs, and conferred tumor re-challenge protection.ConclusionsTIGIT-PVR/NECTIN receptors/ligands are more abundant than PD-1/L1 in the TIME of HPV+ HNSCC. Co-blockade of TIGIT and PD-1 immune checkpoints enhanced anti-tumor efficacy in a CD8+ T-cell-dependent manner and conferred long-term immune protection in a murine model. Our study nominates TIGIT as a therapeutic target for HPV+ HNSCC.


Reproduction ◽  
2017 ◽  
Vol 154 (3) ◽  
pp. 293-305 ◽  
Author(s):  
Nour Nicolas ◽  
Julie A Muir ◽  
Susan Hayward ◽  
Justin L Chen ◽  
Peter G Stanton ◽  
...  

Experimental autoimmune orchitis (EAO) is a rodent model of chronic testicular inflammation that mimics the pathology observed in some types of human infertility. In a previous study, testicular expression of the inflammatory/immunoregulatory cytokine, activin A, was elevated in adult mice during the onset of EAO, indicating a potential role in the regulation of the disease. Consequently, we examined the development of EAO in mice with elevated levels of follistatin, an endogenous activin antagonist, as a potential therapeutic approach to testicular inflammation. Prior to EAO induction, mice received a single intramuscular injection of a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of the circulating form of follistatin, FST315 (FST group). Serum follistatin levels were increased 5-fold in the FST group compared with the control empty vector (EV) group at 30 and 50 days of EAO, but intra-testicular levels of follistatin or activin A were not significantly altered. Induction of EAO was reduced, but not prevented, with mild-to-severe damage in 75% of the EV group and 40% of the FST group, at 50 days following immunisation with testicular homogenate. However, the EAO damage score (based on disruption of the blood–testis barrier, apoptosis, testicular damage and fibrosis) and extent of intratesticular inflammation (expression of inflammatory mediators) were directly proportional to the levels of activin A measured in the testis at 50 days. These data implicate activin A in the progression of EAO, thereby providing a potential therapeutic target; however, elevating circulating follistatin levels were not sufficient to prevent EAO development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4482-4482
Author(s):  
Tanja A. Gruber ◽  
Dianne C. Skelton ◽  
Donald B. Kohn

Abstract Current intensive chemotherapy regimens have dramatically increased survival in acute lymphoblastic leukemia (ALL) patients compared to the 1950s when single agent chemotherapy was used. Despite this success certain subsets of patients have a high rate of relapse such as those with the Philadelphia chromosome (Ph+). Because the Bcr-Abl oncogene is a novel protein product and uniquely expressed in the leukemia clone, it has the potential to generate anti-leukemic immune responses. Our lab has been studying immunotheraputic approaches for Ph+ ALL using a murine model. Previous data have demonstrated that transduction of leukemia cells with the immunomodulators CD40Ligand, CD80, and GM-CSF generate T and NK cell immune responses. When irradiated and given as a vaccine these gene-modified cells are able to protect a portion of mice from an otherwise lethal dose of leukemia. We looked at the ability to systemic IL-12 treatments to potentiate this immune response and found that IL-12 alone was able to eliminate pre-existing disease in mice. IL-12 treatments, however, did not establish immunologic memory and did not protect mice from subsequent re-challenge with a lethal dose of leukemia. IL-12 protection was primarily mediated by CD4 and CD8 T cells as demonstrated by a decrease in survival in nude mice. When CD4 or CD8 T cells were depleted individually, however, protection was maintained indicating that one cell type can compensate for the other in its absence. Depletion of NK cells from Nude mice further decreased survival indicating a role for these cells in the protection. Thus protection was mediated in part by CD4 T lymphocytes, CD8 T lymphocytes, and Natural Killer cells. The ability of IL-12 to activate three different cell types may explain the efficacy seen in this model, where other cytokines alone have failed. In combination, IL-12 and our leukemia cell vaccine are effective in eliminating pre-established aggressive Philadelphia chromosome positive leukemia and establishing long lasting immunity from subsequent lethal doses of wild type leukemia. As expected, the immunologic memory generated by vaccination with gene modified leukemia cells was mediated by CD4 T cells as indicated by depletion studies. These studies demonstrate the feasibility of immunotheraputic approaches in the treatment of Ph+ ALL.


Sign in / Sign up

Export Citation Format

Share Document