scholarly journals Profiling of superoxide dismutase isoenzymes in compartments of the developing bovine antral follicles

Reproduction ◽  
2010 ◽  
Vol 139 (5) ◽  
pp. 871-881 ◽  
Author(s):  
Catherine M H Combelles ◽  
Emily A Holick ◽  
Louis J Paolella ◽  
David C Walker ◽  
Qiaqia Wu

The antral follicle constitutes a complex and regulated ovarian microenvironment that influences oocyte quality. Oxidative stress is a cellular state that may play a role during folliculogenesis and oogenesis, although direct supporting evidence is currently lacking. We thus evaluated the expression of the three isoforms (SOD1, SOD2, and SOD3) of the enzymatic antioxidant superoxide dismutase in all the cellular (granulosa cells, cumulus cells, and oocytes) and extracellular (follicular fluid) compartments of the follicle. Comparisons were made in bovine ovaries across progressive stages of antral follicular development. Follicular fluid possessed increased amounts of SOD1, SOD2, and SOD3 in small antral follicles when compared with large antral follicles; concomitantly, total SOD activity was highest in follicular fluids from smaller diameter follicles. SOD1, SOD2, and SOD3 proteins were expressed in granulosa cells without any fluctuations in follicle sizes. All three SOD isoforms were present, but were distributed differently in oocytes from small, medium, or large antral follicles. Cumulus cells expressed high levels of SOD3, some SOD2, but no detectable SOD1. Our studies provide a temporal and spatial expression profile of the three SOD isoforms in the different compartments of the developing bovine antral follicles. These results lay the ground for future investigations into the potential regulation and roles of antioxidants during folliculogenesis and oogenesis.

Author(s):  
Yu. V. Bodnar ◽  
N. V. Kuzmina ◽  
D. D. Ostapiv ◽  
S. W. Kawa ◽  
O. I. Chajkovska ◽  
...  

The activity and content of superoxide dismutase isoforms (SOD) in granulosa cells from cow ovarian follicles were studied for research after slaughter of cows ovaries were selected, which according to the physiological state were divided into groups: with "fresh" ovulation, at the site of the ovulated follicle there is a hole, no corpus luteum or diameter up to 5 mm, red color (n = 14); with "early corpus luteum", diameter 10-20 mm, color red or brown (n = 41); with “late corpus luteum", diameter 5–15 mm, color yellow (n = 32); "follicular growth", without the corpus luteum (n = 84). The ovaries of cows with small (<4 mm), medium (4 - 7 mm) and large (> 7 mm) follicles were used. Antral fluid was obtained from the follicles, from which granulosa cells were isolated. Cells were suspended according to the volume of follicular fluid in the medium Dulbeccos modified Eagle medium (DME) with the addition of estrus serum of cows, follicular fluid, insulin and heparin. In cell culture, protein concentration, activity, and superoxide dismutase isozymes were determined. It was found that granulosa cells are characterized by SOD activity - 12.4 ± 0.74 IU / mg protein (6.8 ± 1.72 - 19.8 ± 3.75 IU / mg protein). The activity of SOD in the culture of granulosa cells had 5–6 isoforms of the enzyme. It was found that isoforms at the site of localization are divided into cytosolic, mitochondrial and extracellular proteins of SOD. The cytosolic isoform were represented by 3 - 4, and mitochondrial and extracellular have one active protein of the enzyme. he activity of the enzyme and the content of isoforms depended on the size of the follicles from which the cells are removed and the physiological state of the ovaries. The studied indicators characterize the intensity of oxidative metabolism as a whole in cells and in their individual parts and organelles. For cultivation, it is advisable to select granulosa cells from ovarian follicles of "follicular growth" and "late corpus luteum" because they are characterized by consistently high activity of SOD, which protects intracellular components from the cytotoxic action of superoxide anion.


Reproduction ◽  
2000 ◽  
pp. 221-228 ◽  
Author(s):  
HF Irving-Rodgers ◽  
RJ Rodgers

Different morphological phenotypes of follicular basal lamina and of membrana granulosa have been observed. Ten preantral follicles (< 0. 1 mm), and 17 healthy and six atretic antral follicles (0.5-12 mm in diameter) were processed for light and electron microscopy to investigate the relationship the between follicular basal lamina and membrana granulosa. Within each antral follicle, the shape of the basal cells of the membrana granulosa was uniform, and either rounded or columnar. There were equal proportions of follicles </= 4 mm in diameter with columnar basal cells and with rounded basal cells. Larger follicles had only rounded basal cells. Conventional basal laminae of a single layer adjacent to the basal granulosa cells were observed in healthy follicles at the preantral and antral stages. However, at the preantral stage, the conventional types of basal lamina were enlarged or even partially laminated. A second type of basal lamina, described as 'loopy', occurred in about half the preantral follicles and in half the antral follicles </= 4 mm diameter. 'Loopy' basal laminae were not observed in larger follicles. 'Loopy' basal laminae were composed of basal laminae aligning the basal surface of basal granulosa cells, but with additional layers or loops often branching from the innermost layer. Each loop was usually < 1 microm long and had vesicles (20-30 nm) attached to the inner aspect. Basal cellular processes were also common, and vesicles could be seen budding off from these processes. In antral follicles, conventional basal laminae occurred in follicles with rounded basal granulosa cells. Other follicles with columnar cells, and atretic follicles, had the 'loopy' basal lamina phenotype. Thus, follicles have different basal laminae that relate to the morphology of the membrana granulosa.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


Reproduction ◽  
2006 ◽  
Vol 131 (3) ◽  
pp. 515-523 ◽  
Author(s):  
Kirsty A Walters ◽  
John P Binnie ◽  
Bruce K Campbell ◽  
David G Armstrong ◽  
Evelyn E Telfer

This study aimed to determine the effect of insulin-like growth factor-I (IGF-I) on early antral bovine follicular development, and the expression of insulin-like growth factor-binding protein-2 (IGFBP-2). Antral follicles separated into three different size groups were cultured for 6 days in medium supplemented with either a low (10 ng/ml) or high (1 μg/ml) dose of human recombinant IGF-I. Oestradiol production by follicles in all size ranges, cultured in the presence of the high concentration of IGF-I, significantly increased by day 6 (P < 0.05). Follicles in the smallest size range, 165–215 μm, cultured in a high dose of IGF-I, were found to be significantly increased in size (P < 0.01). Oocyte health of the largest follicles (281–380 μm) was significantly improved by the addition of IGF-I to the culture medium. mRNA expression of IGFBP-2 was decreased in the granulosa cells of follicles, size range 216–280 μm, cultured with a high dose of IGF-I (P < 0.05). Granulosa cells (P < 0.05) and oocytes (P < 0.01) of the largest follicles (281–380 μm) showed a decrease in IGFBP-2 expression (protein) when cultured in the control and low-IGF-I treatment groups. Therefore, the response of a bovine follicle to IGF-I is both dose and stage dependent. This work supports a role for IGF-I in modulating somatic and germ-cell maturation and development in early antral follicles. Furthermore, the inverse relationship between the level of IGF-I stimulation and IGFBP-2 expression suggests a local regulatory system modulating IGF-I availability.


Reproduction ◽  
2005 ◽  
Vol 129 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Takashi Shimizu ◽  
Izumi Ohshima ◽  
Manabu Ozawa ◽  
Satoko Takahashi ◽  
Atsushi Tajima ◽  
...  

Heat stress inhibits ovarian follicular development in mammalian species. We hypothesized that heat stress inhibits the function of follicular granulosa cells and suppresses follicular development. To test this, immature female rats were injected with pregnant mare serum gonadotropin (PMSG) at 48 h after the start of temperature treatment (control: 25 °C, 50% RH; heat stress: 35 °C, 70% Relative Humidity). The ovaries and granulosa cells of follicles at different developmental stages were analyzed for gonadotropin receptor levels and aromatase activity; estradiol levels were measured in follicular fluid. Before injection, heat stress diminished only the amount of FSH receptor on granulosa cells of antral follicles. During PMSG-stimulated follicular development, heat stress strongly inhibited gonadotropin receptor levels and aromatase activity in granulosa cells, and estradiol levels in the follicular fluid of early antral, antral and preovulatory follicles. To examine apoptosis and mRNA levels of bcl-2 and bax in granulosa cells, follicles harvested 48 h after PMSG injection were cultured in serum-free conditions. Heat-stressed granulosa cells showed a time-dependent increase in apoptosis. The bcl-2 mRNA levels were similar in control and heat-stressed granulosa cells; bax mRNA levels were increased in heat-stressed granulosa cells. According to these results, heat stress inhibits expression of gonadotropin receptors in granulosa cells and attenuates estrogenic activity of growing follicles, granulosa cells of heat-stressed follicles are susceptible to apoptosis, and the bcl2/bax system is not associated with heat-stress-induced apoptosis of granulosa cells. Our study suggests that decreased numbers and function of granulosa cells may cause ovarian dysfunction in domestic animals in summer.


2002 ◽  
Vol 172 (1) ◽  
pp. 45-59 ◽  
Author(s):  
F Le Bellego ◽  
C Pisselet ◽  
C Huet ◽  
P Monget ◽  
D Monniaux

This study aimed to determine the physiological role of laminin (LN) and its receptor, alpha(6)beta(1) integrin, in controlling the functions of granulosa cells (GC) during follicular development in sheep ovary. Immunohistochemistry experiments showed the presence of increasing levels of LN (P<0.0001), and high levels of mature alpha(6)beta(1) integrin in GC layers of healthy antral follicles during the follicular and the preovulatory phases of the estrous cycle. In vitro, the addition of a function-blocking antibody raised against alpha(6) subunit (anti-alpha(6) IgG) to the medium of ovine GC cultured on LN impaired cell spreading (P<0.0001), decreased the proliferation rate (P<0.05) and increased the apoptosis rate (P<0.05). Furthermore, addition of anti-alpha(6) IgG enhanced estradiol (E2) secretion by GC in the presence or absence of follicle-stimulating hormone (FSH), luteinizing hormone or insulin-like growth factor-I in culture medium (P<0.0001), and inhibited progesterone (P4) secretion in basal conditions or in the presence of low (0.5 ng/ml) FSH concentrations only (P<0.0001). The anti-alpha(6) IgG effect was specific to an interaction of LN with alpha(6)beta(1) integrin since it was ineffective on GC cultured on heat-denatured LN, RGD (arginine-glycine-aspartic acid) peptides and non-coated substratum. Hence, this study established that alpha(6)beta(1) integrin 1) was expressed in GC of antral follicles, 2) mediated the actions of LN on survival, proliferation and steroidogenesis of GC, and 3) was able to dramatically modulate P4 and E2 secretion by GC in vitro. It is suggested that during the follicular and the preovulatory phases of the estrous cycle, the increasing levels of LN in GC of large antral follicles might support their final development to ovulation.


Reproduction ◽  
2008 ◽  
Vol 136 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Ikkou Kawashima ◽  
Tetsuji Okazaki ◽  
Noritaka Noma ◽  
Masahide Nishibori ◽  
Yasuhisa Yamashita ◽  
...  

In this study, we collected follicular fluid, granulosa cells, and cumulus cells from antral follicles at specific time intervals following equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) treatment of gilts. The treatment with eCG increased the production of estrogen coordinately with up-regulated proliferation of granulosa and cumulus cells. eCG also induced the expression ofLHCGRandPGRin cumulus cells and progesterone accumulation was detected in follicular fluid prior to the LH/hCG surge. Moreover, progesterone and progesterone receptor (PGR) were critical for FSH-inducedLHCGRexpression in cumulus cells in culture. The expression ofLHCGRmRNA in cumulus cells was associated with the ability of LH to induce prostaglandin production, release of epidermal growth factor (EGF)-like factors, and a disintegrin and metalloprotease with thrombospondin-like repeats 1 expression, promoting cumulus cell oocyte complexes (COCs) expansion and oocyte maturation. Based on the unique expression and regulation ofPGRandLHCGRin cumulus cells, we designed a novel porcine COCs culture system in which hormones were added sequentially to mimic changes observedin vivo. Specifically, COCs from small antral follicles were pre-cultured with FSH and estradiol for 10 h at which time progesterone was added for another 10 h. After 20 h, COCs were moved to fresh medium containing LH, EGF, and progesterone. The oocytes matured in this revised COC culture system exhibited greater developmental competence to blastocyst stage. From these results, we conclude that to achieve optimal COC expansion and oocyte maturation in culture the unique gene expression patterns in cumulus cells of each species need to be characterized and used to increase the effectiveness of hormone stimulation.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 309-318 ◽  
Author(s):  
R J Rodgers ◽  
H F Irving-Rodgers

Follicle classification is an important aid to the understanding of follicular development and atresia. Some bovine primordial follicles have the classical primordial shape, but ellipsoidal shaped follicles with some cuboidal granulosa cells at the poles are far more common. Preantral follicles have one of two basal lamina phenotypes, either a single aligned layer or one with additional layers. In antral follicles <5 mm diameter, half of the healthy follicles have columnar shaped basal granulosa cells and additional layers of basal lamina, which appear as loops in cross section (‘loopy’). The remainder have aligned single-layered follicular basal laminas with rounded basal cells, and contain better quality oocytes than the loopy/columnar follicles. In sizes >5 mm, only aligned/rounded phenotypes are present. Dominant and subordinate follicles can be identified by ultrasound and/or histological examination of pairs of ovaries. Atretic follicles <5 mm are either basal atretic or antral atretic, named on the basis of the location in the membrana granulosa where cells die first. Basal atretic follicles have considerable biological differences to antral atretic follicles. In follicles >5 mm, only antral atresia is observed. The concentrations of follicular fluid steroid hormones can be used to classify atresia and distinguish some of the different types of atresia; however, this method is unlikely to identify follicles early in atresia, and hence misclassify them as healthy. Other biochemical and histological methods can be used, but since cell death is a part of normal homoeostatis, deciding when a follicle has entered atresia remains somewhat subjective.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 317-321 ◽  
Author(s):  
Barbara C. Vanderhyden

Investigations of strains of mice defective in germ cell development have revealed the importance of oocytes for the initial stages of folliculogenesis (Pellaset al., 1991; Huanget al., 1993). Various aspects of follicular development are dependent upon and/or influenced by the presence of oocytes, including granulosa cell proliferation (Vanderhydenet al., 1990, 1992) and cumulus expansion (Buccioneet al., 1990; Salustriet al., 1990; Vanderhydenet al., 1990; Vanderhyden, 1993). We are investigating the possibility that oocytes influence one of the primary functions of granulosa cells: steroidogenesis. In many species, granulosa cells removed from preovulatory follicles luteinisein vitro(Channinget al., 1982), presumably due to loss of contact with follicular luteinisation inhibitory factor(s). Indeed, follicular fluid can prevent granulosa cell luteinisationin vitro(Ledwitz-Rigbyet al., 1977). Follicular fluid, however, may simply be the medium for transport of factors secreted by oocytes to regulate granulosa cell activities.


Sign in / Sign up

Export Citation Format

Share Document