scholarly journals Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants

Reproduction ◽  
2013 ◽  
Vol 146 (4) ◽  
pp. 377-387 ◽  
Author(s):  
Thomas E Spencer ◽  
Niamh Forde ◽  
Piotr Dorniak ◽  
Thomas R Hansen ◽  
Jared J Romero ◽  
...  

In cattle, the blastocyst hatches from the zona pellucida on days 8–9 and then forms a conceptus that grows and elongates into an ovoid and then filamentous shape between days 9 and 16. The growing conceptus synthesizes and secretes prostaglandins (PGs) and interferon τ (IFNT). Our hypothesis was that the ovoid conceptus exerts a local effect on the endometrium prior to maternal recognition of pregnancy on day 16 in cattle. In study one, synchronized cyclic heifers received no blastocysts or 20in vitro-produced blastocysts on day 7 and their uteri were collected on day 13. IFNT was not detected by RIA in the uterine flushing samples of pregnant heifers containing multiple ovoid conceptuses; however, total PG levels were higher in the uterine lumen of pregnant heifers than in that of cyclic heifers. Microarray analysis revealed that the expression of 44 genes was increased in the endometria of day 13 pregnant heifers when compared with that in the endometria of cyclic heifers, and many of these genes were classical Type I IFN-stimulated genes (ISGs). In studies two and three, the effects of infusing PGs at the levels produced by the elongating day 14 conceptus into the uterine lumen of cyclic ewes on ISG expression in the endometrium were determined. Results indicated that the infusion of PGs increased the abundance of several ISGs in the endometrium. These studies support the hypothesis that the day 13 conceptus secretes PGs that act locally in a paracrine manner to alter gene expression in the endometrium prior to pregnancy recognition in cattle.

2011 ◽  
Vol 2 (3) ◽  
pp. 127-134
Author(s):  
Tiia Husso ◽  
Mikko P. Turunen ◽  
Nigel Parker ◽  
Seppo Ylä-Herttuala

AbstractSmall RNAs have been shown to regulate gene transcription by interacting with the promoter region and modifying the histone code. The exact mechanism of function is still unclear but the feasibility to activate or repress endogenous gene expression with small RNA molecules has already been demonstrated in vitro and in vivo. In traditional gene therapy non-mutated or otherwise useful genes are inserted into patient's cells to treat a disease. In epigenetherapy the action of small RNAs is utilized by delivering only the small RNAs to patient's cells where they then regulate gene expression by epigenetic mechanisms. This method could be widely useful not only for basic research but also for clinical applications of small RNAs.


2020 ◽  
Author(s):  
Clara D. Wang ◽  
Rachel Mansky ◽  
Hannah LeBlanc ◽  
Chandra M. Gravel ◽  
Katherine E. Berry

ABSTRACTNon-coding RNAs regulate gene expression in every domain of life. In bacteria, small RNAs (sRNAs) regulate gene expression in response to stress and are often assisted by RNA-chaperone proteins, such as Hfq. We have recently developed a bacterial three-hybrid (B3H) assay that detects the strong binding interactions of certain E. coli sRNAs with proteins Hfq and ProQ. Despite the promise of this system, the signal-to-noise has made it challenging to detect weaker interactions. In this work, we use Hfq-sRNA interactions as a model system to optimize the B3H assay, so that weaker RNA-protein interactions can be more reliably detected. We find that the concentration of the RNA-DNA adapter is an important parameter in determining the signal in the system, and have modified the plasmid expressing this component to tune its concentration to optimal levels. In addition, we have systematically perturbed the binding affinity of Hfq-RNA interactions to define, for the first time, the relationship between B3H signal and in vitro binding energetics. The new pAdapter construct presented here substantially expands the range of detectable interactions in the B3H assay, broadening its utility. This improved assay will increase the likelihood of identifying novel protein-RNA interactions with the B3H system, and will facilitate exploration of the binding mechanisms of these interactions.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Arianne M. Babina ◽  
Nicholas E. Lea ◽  
Michelle M. Meyer

ABSTRACT In many bacterial species, the glycine riboswitch is composed of two homologous ligand-binding domains (aptamers) that each bind glycine and act together to regulate the expression of glycine metabolic and transport genes. While the structure and molecular dynamics of the tandem glycine riboswitch have been the subject of numerous in vitro studies, the in vivo behavior of the riboswitch remains largely uncharacterized. To examine the proposed models of tandem glycine riboswitch function in a biologically relevant context, we characterized the regulatory activity of mutations to the riboswitch structure in Bacillus subtilis using β-galactosidase assays. To assess the impact disruptions to riboswitch function have on cell fitness, we introduced these mutations into the native locus of the tandem glycine riboswitch within the B. subtilis genome. Our results indicate that glycine does not need to bind both aptamers for regulation in vivo and mutations perturbing riboswitch tertiary structure have the most severe effect on riboswitch function and gene expression. We also find that in B. subtilis, the glycine riboswitch-regulated gcvT operon is important for glycine detoxification. IMPORTANCE The glycine riboswitch is a unique cis-acting mRNA element that contains two tandem homologous glycine-binding domains that act on a single expression platform to regulate gene expression in response to glycine. While many in vitro experiments have characterized the tandem architecture of the glycine riboswitch, little work has investigated the behavior of this riboswitch in vivo. In this study, we analyzed the proposed models of tandem glycine riboswitch regulation in the context of its native locus within the Bacillus subtilis genome and examined how disruptions to glycine riboswitch function impact organismal fitness. Our work offers new insights into riboswitch function in vivo and reinforces the potential of riboswitches as novel antimicrobial targets. IMPORTANCE The glycine riboswitch is a unique cis-acting mRNA element that contains two tandem homologous glycine-binding domains that act on a single expression platform to regulate gene expression in response to glycine. While many in vitro experiments have characterized the tandem architecture of the glycine riboswitch, little work has investigated the behavior of this riboswitch in vivo. In this study, we analyzed the proposed models of tandem glycine riboswitch regulation in the context of its native locus within the Bacillus subtilis genome and examined how disruptions to glycine riboswitch function impact organismal fitness. Our work offers new insights into riboswitch function in vivo and reinforces the potential of riboswitches as novel antimicrobial targets.


1992 ◽  
Vol 66 (1) ◽  
pp. 95-105 ◽  
Author(s):  
A M Colberg-Poley ◽  
L D Santomenna ◽  
P P Harlow ◽  
P A Benfield ◽  
D J Tenney

2019 ◽  
Vol 70 (19) ◽  
pp. 5355-5374 ◽  
Author(s):  
Dandan Zang ◽  
Jingxin Wang ◽  
Xin Zhang ◽  
Zhujun Liu ◽  
Yucheng Wang

Abstract Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.


2006 ◽  
Vol 3 (2) ◽  
pp. 109-122 ◽  
Author(s):  
◽  
Christopher H. Bryant ◽  
Graham J.L. Kemp ◽  
Marija Cvijovic

Summary We have taken a first step towards learning which upstream Open Reading Frames (uORFs) regulate gene expression (i.e., which uORFs are functional) in the yeast Saccharomyces cerevisiae. We do this by integrating data from several resources and combining a bioinformatics tool, ORF Finder, with a machine learning technique, inductive logic programming (ILP). Here, we report the challenge of using ILP as part of this integrative system, in order to automatically generate a model that identifies functional uORFs. Our method makes searching for novel functional uORFs more efficient than random sampling. An attempt has been made to predict novel functional uORFs using our method. Some preliminary evidence that our model may be biologically meaningful is presented.


Sign in / Sign up

Export Citation Format

Share Document