scholarly journals Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology

2021 ◽  
Vol 118 (17) ◽  
pp. e2011574118
Author(s):  
Galina Yurevna Zheleznyakova ◽  
Eliane Piket ◽  
Maria Needhamsen ◽  
Michael Hagemann-Jensen ◽  
Diana Ekman ◽  
...  

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.

2020 ◽  
Author(s):  
Galina Yurevna Zheleznyakova ◽  
Eliane Piket ◽  
Maria Needhamsen ◽  
Michael Hagemann-Jensen ◽  
Diana Ekman ◽  
...  

AbstractMultiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), is associated with dysregulation of microRNAs (miRNA). We here analyzed all classes of small non-coding RNAs (sncRNAs) in matching peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells and cell-free CSF from relapsing-remitting (RRMS, n=12 in relapse, n=11 in remission), secondary progressive (SPMS, n=6) MS patients and non-inflammatory and inflammatory neurological disease controls (NINDC, n=11; INDC, n=5). We show widespread changes in small nuclear, nucleolar, transfer RNAs and miRNAs. In CSF cells, 133/133 and 115/117 differentially expressed sncRNAs are increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65/67 differentially expressed PBMC sncRNAs are decreased in RRMS compared to NINDC. The striking contrast between periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the target organ.


2021 ◽  
Vol 11 (8) ◽  
pp. 721
Author(s):  
Afshin Derakhshani ◽  
Zahra Asadzadeh ◽  
Hossein Safarpour ◽  
Patrizia Leone ◽  
Mahdi Abdoli Shadbad ◽  
...  

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lidan Dong ◽  
Yanfei Zheng ◽  
Dan Liu ◽  
Fuhong He ◽  
Kaiki Lee ◽  
...  

Background. Constitution in traditional Chinese medicine (TCM) plays a key role in the genesis, development, and prognosis of diseases. Phlegm-dampness constitution (PDC) is one of the nine constitutions in TCM, susceptible to metabolic disorders, which is mainly manifested by profuse phlegm, loose abdomen, and greasy face. Epidemiologic, genomic, and epigenetic studies have been carried out in previous works, confirming that PDC represents a distinctive population with microcosmic changes related to metabolic disorders. However, whether long noncoding RNAs (lncRNAs) play a regulatory role in metabolic disease in subjects with PDC remains largely unknown. We aimed to investigate distinct lncRNA and mRNA expression signatures and lncRNA-mRNA regulatory networks in the phlegm-dampness constitution (PDC). Methods. The peripheral blood mononuclear cells (PBMCs) were isolated from the subjects with PDC ( n = 13 ) and balanced constitution (BC) ( n = 9 ). The profiles of lncRNAs and mRNAs in PBMCs were analyzed using microarray and further validated with RT-qPCR. Subsequently, pathway analysis was performed to investigate the function of differentially expressed mRNAs by using Ingenuity Pathway Analysis (IPA). Results. Results suggested that some mRNAs, which were regulated by the differentially expressed lncRNAs, were mainly enriched in lipid metabolism and immune inflammation-related pathways. This was consistent with the molecular characteristics of previous studies, indicating that the clinical characteristics of metabolic disorders in PDC might be regulated by lncRNAs. Furthermore, by making coexpression network construction as well as cis-regulated target gene analysis, several lncRNA-mRNA pairs with potential regulatory relationships were identified by bioinformatic analyses, including RP11-317J10.2-CA3, RP11-809C18.3-PIP4K2A, LINC0069-RFTN1, TTTY15-ARHGEF9, and AC135048.13-ORAI3. Conclusions. This study first revealed that the expression characteristics of lncRNAs/mRNAs may be potential biomarkers, indicating that the distinctive physical and clinical characteristics of PDC might be partially attributed to the specific expression signatures of lncRNAs/mRNAs.


2020 ◽  
Vol 140 (5) ◽  
pp. 715-736 ◽  
Author(s):  
Laura Starost ◽  
Maren Lindner ◽  
Martin Herold ◽  
Yu Kang T. Xu ◽  
Hannes C. A. Drexler ◽  
...  

Abstract Multiple sclerosis (MS) is the most frequent demyelinating disease in young adults and despite significant advances in immunotherapy, disease progression still cannot be prevented. Promotion of remyelination, an endogenous repair mechanism resulting in the formation of new myelin sheaths around demyelinated axons, represents a promising new treatment approach. However, remyelination frequently fails in MS lesions, which can in part be attributed to impaired differentiation of oligodendroglial progenitor cells into mature, myelinating oligodendrocytes. The reasons for impaired oligodendroglial differentiation and defective remyelination in MS are currently unknown. To determine whether intrinsic oligodendroglial factors contribute to impaired remyelination in relapsing–remitting MS (RRMS), we compared induced pluripotent stem cell-derived oligodendrocytes (hiOL) from RRMS patients and controls, among them two monozygous twin pairs discordant for MS. We found that hiOL from RRMS patients and controls were virtually indistinguishable with respect to remyelination-associated functions and proteomic composition. However, while analyzing the effect of extrinsic factors we discovered that supernatants of activated peripheral blood mononuclear cells (PBMCs) significantly inhibit oligodendroglial differentiation. In particular, we identified CD4+ T cells as mediators of impaired oligodendroglial differentiation; at least partly due to interferon-gamma secretion. Additionally, we observed that blocked oligodendroglial differentiation induced by PBMC supernatants could not be restored by application of oligodendroglial differentiation promoting drugs, whereas treatment of PBMCs with the immunomodulatory drug teriflunomide prior to supernatant collection partly rescued oligodendroglial differentiation. In summary, these data indicate that the oligodendroglial differentiation block is not due to intrinsic oligodendroglial factors but rather caused by the inflammatory environment in RRMS lesions which underlines the need for drug screening approaches taking the inflammatory environment into account. Combined, these findings may contribute to the development of new remyelination promoting strategies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Helle Bach Søndergaard ◽  
Laura Airas ◽  
Jeppe Romme Christensen ◽  
Birgitte Romme Nielsen ◽  
Lars Börnsen ◽  
...  

Pregnancy affects the disease course in multiple sclerosis (MS), particularly in the third trimester, where the relapse rate is reduced by as much as two thirds. This study aimed at identifying changes in microRNA (miRNA) and immune cell phenotypes in pregnant MS patients. Discovery and validation studies to detect differentially expressed miRNAs were performed with quantitative real-time PCR on peripheral blood mononuclear cells (PBMC). Flow cytometry analysis was performed on PBMC stained with antibodies directed against surface markers of antigen presenting cells (APCs), NK-cells, NKT cells, CD4+ and CD8+ T cells and subsets of these cell types, including PDL1 and PDL2 expressing subsets. RNA was extracted from whole blood, monocytes, and NK-cells to investigate expression and correlation between regulated miRNAs and mRNAs. In total, 15 miRNAs were validated to be differentially expressed between third trimester pregnant and postpartum MS patients (Benjamini-Hochberg false discovery rate from p = 0.03–0.00004). Of these, 12 miRNAs were downregulated in pregnancy and 6 of the 15 miRNAs were altered by more than ±2-fold (+2.99- to -6.38-fold). Pregnant MS patients had a highly significant increase in the percentage of monocytes and a decrease of NK-cells and myeloid dendritic cells compared to non-pregnant MS patients. We confirm previous reports of a relative increase in CD56-bright NK-cells and a decrease in CD56-dim NK-cells in third trimester of pregnancy and report an increase in non-committed follicular helper cells. PDL1 and PDL2 expression was increased in pregnant patients together with IL10. Also, in monocytes IL10, PDL1, and PDL2 were upregulated whereas miR-1, miR-20a, miR-28, miR-95, miR-146a, miR-335, and miR-625 were downregulated between pregnant and untreated MS patients. IL10, PDL1, and PDL2 were predicted targets of MS pregnancy-changed miRNAs, further supported by their negative correlations. Additionally, previously identified pregnancy-regulated mRNAs were identified as predicted targets of the miRNAs. PDL1 and PDL2 bind PD-1 expressed on T cells with an inhibitory effect on T-cell proliferation and increase in IL10 production. These results indicate that some of the effects behind the disease-ameliorating third trimester of pregnancy might be caused by changed expression of miRNAs and immunoregulatory molecules in monocytes.


2021 ◽  
Vol 22 (14) ◽  
pp. 7536
Author(s):  
Inez Wens ◽  
Ibo Janssens ◽  
Judith Derdelinckx ◽  
Megha Meena ◽  
Barbara Willekens ◽  
...  

Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.


Author(s):  
Samantha P. L. Law ◽  
Prudence N. Gatt ◽  
Stephen D. Schibeci ◽  
Fiona C. McKay ◽  
Steve Vucic ◽  
...  

AbstractAlthough genetic and epidemiological evidence indicates vitamin D insufficiency contributes to multiple sclerosis (MS), and serum levels of vitamin D increase on treatment with cholecalciferol, recent metanalyses indicate that this vitamin D form does not ameliorate disease. Genetic variation in genes regulating vitamin D, and regulated by vitamin D, affect MS risk. We evaluated if the expression of vitamin D responsive MS risk genes could be used to assess vitamin D response in immune cells. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy controls and people with MS treated with dimethyl fumarate. We assayed changes in expression of vitamin D responsive MS risk (VDRMS) genes in response to treatment with 25 hydroxy vitamin D in the presence or absence of inflammatory stimuli. Expression of CYP24A1 and other VDRMS genes was significantly altered in PBMCs treated with vitamin D in the homeostatic and inflammatory models. Gene expression in MS samples had similar responses to controls, but lower initial expression of the risk genes. Vitamin D treatment abrogated these differences. Expression of CYP24A1 and other MS risk genes in blood immune cells indicate vitamin D response and could enable assessment of immunological response to vitamin D in clinical trials and on therapy.


Sign in / Sign up

Export Citation Format

Share Document