scholarly journals Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro

Reproduction ◽  
2005 ◽  
Vol 129 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Roberto Gualtieri ◽  
Raffaele Boni ◽  
Elisabetta Tosti ◽  
Maria Zagami ◽  
Riccardo Talevi

In mammals, sperm adhesion to the epithelial cells lining the oviductal isthmus plays a key role in the maintenance of motility and in the selection of superior quality subpopulations. In the bovine species, heparin and other sulfated glycoconjugates powerfully induce the synchronous release of sperm adhering to tubal epithelium in vitro and may represent the signal which triggers release at ovulation in vivo. Sperm detachment may be due either to surface remodeling or to hyperactivation brought about by capacitation. In this paper, the dynamics of intracellular free Ca2+concentration ([Ca2+]i) and protein tyrosine phosphorylation in sperm during and after heparin-induced release from in vitro cultured oviductal monolayers were assessed to determine whether this event is due to capacitation. Moreover, Ca2+-ionophore A23187, thapsigargin, thimerosal and caffeine were used to determine whether [Ca2+]i increase and/or hyperactivation can induce sperm release. Results showed that: 1. heparin-released sperm have significantly higher [Ca2+]i than adhering sperm; 2. heparin induces a [Ca2+]i elevation in the sperm head followed by detachment from the monolayers; 3. external Ca2+is not required for heparin-induced release; 4. [Ca2+]i increase and/or hyperactivation are unable to release sperm; and 5. heparin-released sperm have an increased level of tyrosine phosphorylated proteins compared with adhering sperm. In conclusion, although heparin is considered a long-lasting capacitation agent, it quickly modulates the capacitation of bovine sperm adhering to the fallopian epithelium, probably leading to surface remodeling and therefore to the release of sperm selected and stored within the oviduct through adhesion.


2008 ◽  
Vol 20 (6) ◽  
pp. 649 ◽  
Author(s):  
Carmen Colas ◽  
Peter James ◽  
Liz Howes ◽  
Roy Jones ◽  
José A. Cebrian-Perez ◽  
...  

Unlike most other species, ram spermatozoa are difficult to capacitate in vitro. Bicarbonate and Ca2+ are necessary, whereas bovine serum albumin does not appear to be obligatory. In the present investigation we have assessed (1) the ability of the cholesterol-sequestering agent, methyl-β-cyclodextrin (M-β-CD), to initiate protein tyrosine phosphorylation, and (2) the importance of phosphodiesterases (PDEs) in controlling the levels of cAMP. Results show that despite removing significant amounts of membrane cholesterol, as assessed by filipin staining, M-β-CD treatment did not stimulate major increases in protein tyrosine phosphorylation. Addition of a cocktail of PDE inhibitors (theophylline and caffeine), a phosphatase inhibitor (okadaic acid) and dibutyryl-cAMP (db-cAMP), however, stimulated specific tyrosine phosphorylation of several proteins between 30 and 120 kDa. On their own, none of the above reagents were effective but a combination of db-cAMP + PDE inhibitors was sufficient to achieve a maximal response. H-89, a protein kinase-A inhibitor, suppressed tyrosine phosphorylation significantly. Immunofluorescence revealed that the newly-phosphorylated proteins localised mainly in the sperm tail. These findings suggest that in ram spermatozoa cAMP levels are too low to initiate tyrosine phosphorylation of flagellar proteins that are indicative of the capacitation state and that this is caused by unusually high levels of intracellular PDEs.



Reproduction ◽  
2016 ◽  
Vol 152 (6) ◽  
pp. R233-R245 ◽  
Author(s):  
Bart Leemans ◽  
Bart M Gadella ◽  
Tom A E Stout ◽  
Catharina De Schauwer ◽  
Hilde Nelis ◽  
...  

In contrast to man and many other mammalian species, conventionalin vitrofertilization (IVF) with horse gametes is not reliably successful. The apparent inability of stallion spermatozoa to penetrate the zona pellucidain vitrois most likely due to incomplete activation of spermatozoa (capacitation) because of inadequate capacitating or fertilizing media.In vivo, the oviduct and its secretions provide a microenvironment that does reliably support and regulate interaction between the gametes. This review focuses on equine sperm–oviduct interaction. Equine sperm–oviduct binding appears to be more complex than the presumed species-specific calcium-dependent lectin binding phenomenon; unfortunately, the nature of the interaction is not understood. Various capacitation-related events are induced to regulate sperm release from the oviduct epithelium and most data suggest that exposure to oviduct secretions triggers sperm capacitationin vivo. However, only limited information is available about equine oviduct secreted factors, and few have been identified. Another aspect of equine oviduct physiology relevant to capacitation is acid–base balance.In vitro, it has been demonstrated that stallion spermatozoa show tail-associated protein tyrosine phosphorylation after binding to oviduct epithelial cells containing alkaline secretory granules. In response to alkaline follicular fluid preparations (pH 7.9), stallion spermatozoa also show tail-associated protein tyrosine phosphorylation, hyperactivated motility and (limited) release from oviduct epithelial binding. However, these ‘capacitating conditions’ are not able to induce the acrosome reaction and fertilization. In conclusion, developing a defined capacitating medium to support successful equine IVF will depend on identifying as yet uncharacterized capacitation triggers present in the oviduct.



Reproduction ◽  
2006 ◽  
Vol 132 (5) ◽  
pp. 721-732 ◽  
Author(s):  
Patricia Grasa ◽  
José Álvaro Cebrián-Pérez ◽  
Teresa Muiño-Blanco

We validate the chlortetracycline (CTC) technique for the evaluation of capacitation and acrosome reaction-like changes in ram sperm, carrying out a double estimation of the acrosome status after treatment with lysophosphatidylcholine, using fluorescein isocyanate (FITC)-RCA/ethidium homodimer 1 (EthD-1) and CTC/EthD-1. Highly consistent results and a positive correlation between the results of acrosome-reacted sperm evaluated with both techniques were obtained. In this study, we evaluate the effects of ram sperm capacitation of BSA, Ca2+, NaHCO3and cAMP agonists and their influence on the associated protein tyrosine phosphorylation. We found a time-dependent increase in capacitation related to protein tyrosine phosphorylation, either in the absence or the presence of BSA. The addition of an increasing concentration of cholesterol to samples containing BSA did not influence results. The effect of bicarbonate was concentration-dependent, with a significantly lowered value of non-capacitated sperm in the presence 18 and 25 mM. The addition of extracellular calcium did not significantly increase either the proportion of capacitated sperm or the protein tyrosine phosphorylation signalling, although a significantly higher value of acrosome-reacted sperm was found in samples containing 4 mM Ca2+. cAMP agonists increased capacitated sperm and protein tyrosine phosphorylation signalling. The inhibition of protein kinase A by H-89 caused a decrease in sperm capacitation. Addition of a calcium-entry blocker (Verapamil; Sigma) did not influence results, which suggests that the calcium entry blocker was unable to inhibit the calcium influx associated with capacitation in ram sperm. Our findings might benefit our understanding of the biochemical mechanisms involved in mammalian sperm capacitation and ultimately, fertility.



Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 1129-1137 ◽  
Author(s):  
P.E. Visconti ◽  
J.L. Bailey ◽  
G.D. Moore ◽  
D. Pan ◽  
P. Olds-Clarke ◽  
...  

The molecular basis of mammalian sperm capacitation, defined functionally as those processes that confer on the sperm the acquisition of fertilization-competence either in vivo in the female reproductive tract or in vitro, is poorly understood. We demonstrate here that capacitation of caudal epididymal mouse sperm in vitro is accompanied by a time-dependent increase in the protein tyrosine phosphorylation of a subset of proteins of M(r) 40,000-120,000. Incubation of sperm in media devoid of bovine serum albumin, CaCl2 or NaHCO3, components which individually are required for capacitation, prevent the sperm from undergoing capacitation as assessed by the ability of the cells to acquire the pattern B chlortetracycline fluorescence, to undergo the zona pellucida-induced acrosome reaction and, in some cases, to fertilize metaphase II-arrested eggs in vitro. In each of these cases the protein tyrosine phosphorylation of the subset of capacitation-associated proteins does not occur. Protein tyrosine phosphorylation of these particular proteins, as well as sperm capacitation, can be recovered in media devoid of each of these three constituents (bovine serum albumin, CaCl2 or NaHCO3) by adding back the appropriate component in a concentration-dependent manner. The requirement of NaHCO3 for these phosphorylations is not due to an alkalinization of intracellular sperm pH or to an increase in media pH. Caput epididymal sperm, which lack the ability to undergo capacitation in vitro, do not display this capacitation-dependent subset of tyrosine phosphorylated proteins in complete media even after extended incubation periods, and do not fertilize metaphase II-arrested eggs in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)



1998 ◽  
Vol 274 (2) ◽  
pp. H513-H519 ◽  
Author(s):  
Susan A. Kelly ◽  
Pascal J. Goldschmidt-Clermont ◽  
Emily E. Milliken ◽  
Toshiyuki Arai ◽  
Elise H. Smith ◽  
...  

Proinflammatory cytokines initiate the vascular inflammatory response via the upregulation of adhesion molecules on the luminal endothelial surface. We investigated directly the role of protein tyrosine phosphorylation in the upregulation of the endothelial adhesion molecules, intercellular adhesion molecule 1 (ICAM-1) and E-selectin, and the consequent adhesion of neutrophils, after tumor necrosis factor (TNF)-α-stimulation of human aortic endothelial cells in vitro. Time- and dose-dependent TNF-α-stimulated ICAM-1 and E-selectin upregulation and neutrophil adhesion each were suppressed by tyrosine kinase inhibitors, including genistein (200 μM), but not genistin, its isoflavone analog without tyrosine kinase inhibitory activity. Tyrphostin AG 126, a synthetic selective tyrosine kinase inhibitor, also suppressed ICAM-1 and E-selectin upregulation and neutrophil adhesion, each in a dose-dependent manner, whereas tyrphostin AG 1288 had no effect. Tyrosine phosphorylation of two proteins (85 and 145 kDa in the cytoskeleton fraction) found minutes after TNF-α-stimulation was also inhibited by genistein. These findings suggest that, in endothelial cells, TNF-α upregulates ICAM-1 and E-selectin expression and consequent neutrophil adhesion via protein tyrosine phosphorylation.



mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Young-Jung Jung ◽  
Daniel P. Miller ◽  
John D. Perpich ◽  
Zackary R. Fitzsimonds ◽  
Daonan Shen ◽  
...  

ABSTRACT Protein-tyrosine phosphorylation in bacteria plays a significant role in multiple cellular functions, including those related to community development and virulence. Metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are widespread in Gram-positive bacteria. Here, we show that Porphyromonas gingivalis, a Gram-negative periodontal pathogen, expresses a PHP protein, Php1, with divalent metal ion-dependent tyrosine phosphatase activity. Php1 tyrosine phosphatase activity was attenuated by mutation of conserved histidine residues that are important for the coordination of metal ions and by mutation of a conserved arginine residue, a key residue for catalysis in other bacterial PHPs. The php1 gene is located immediately downstream of the gene encoding the bacterial tyrosine (BY) kinase Ptk1, which was a substrate for Php1 in vitro. Php1 rapidly caused the conversion of Ptk1 to a state of low tyrosine phosphorylation in the absence of discernible intermediate phosphoforms. Active Php1 was required for P. gingivalis exopolysaccharide production and for community development with the antecedent oral biofilm constituent Streptococcus gordonii under nutrient-depleted conditions. In contrast, the absence of Php1 had no effect on the ability of P. gingivalis to form monospecies biofilms. In vitro, Php1 enzymatic activity was resistant to the effects of the streptococcal secreted metabolites pABA and H2O2, which inhibited Ltp1, an enzyme in the low-molecular-weight (LMW) phosphotyrosine phosphatase family. Ptk1 reciprocally phosphorylated Php1 on tyrosine residues 159 and 161, which independently impacted phosphatase activity. Loss of Php1 rendered P. gingivalis nonvirulent in an animal model of periodontal disease. Collectively, these results demonstrate that P. gingivalis possesses active PHP and LMW tyrosine phosphatases, a unique configuration in Gram-negatives which may allow P. gingivalis to maintain phosphorylation/dephosphorylation homeostasis in multispecies communities. Moreover, Php1 contributes to the pathogenic potential of the organism. IMPORTANCE Periodontal diseases are among the most common infections of humans and are also associated with systemic inflammatory conditions. Colonization and pathogenicity of P. gingivalis are regulated by signal transduction pathways based on protein tyrosine phosphorylation and dephosphorylation. Here, we identify and characterize a novel component of the tyrosine (de)phosphorylation axis: a polymerase and histindinol phosphatase (PHP) family enzyme. This tyrosine phosphatase, designated Php1, was required for P. gingivalis community development with other oral bacteria, and in the absence of Php1 activity P. gingivalis was unable to cause disease in a mouse model of periodontitis. This work provides significant insights into the protein tyrosine (de)phosphorylation network in P. gingivalis, its adaptation to heterotypic communities, and its contribution to colonization and virulence.



Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1501-1507 ◽  
Author(s):  
O Miura ◽  
N Nakamura ◽  
FW Quelle ◽  
BA Witthuhn ◽  
JN Ihle ◽  
...  

Abstract Protein tyrosine phosphorylation has been hypothesized to play a key role in the growth signaling induced by erythropoietin (Epo), although the Epo receptor (EpoR), a member of the cytokine receptor superfamily, lacks a tyrosine kinase domain. Recently, the JAK2 tyrosine kinase was shown to be activated on Epo stimulation and to bind to the cytoplasmic domain of EpoR in vitro. To further explore the mechanisms of activation of JAK2 in EpoR-mediated signal transduction, we assessed the conditions for association of JAK2 with EpoR in vivo. Epo stimulation rapidly induced association of JAK2 with the EpoR in an interleukin 3 (IL-3)-dependent cell line transfected with the wild-type EpoR. On Epo stimulation JAK2 also associated with a truncated mutant EpoR (H-mutant), which is mitogenetically active but not tyrosine phosphorylated, indicating that association does not require receptor phosphorylation and occurs in the membrane proximal region. However, association was not detected with mutant receptors inactivated by an internal deletion or a point mutation, Trp282 to Arg, in a membrane- proximal cytoplasmic region (PB or PM4 mutant, respectively). Immune complex kinase assays of anti-EpoR immunoprecipitates also revealed that activated JAK2 associates with the EpoR in Epo-stimulated cells. By this approach, association also occurred with the mitogenically active H mutant but not with the mitogenically inactive PB or PM4 mutants. In the immune complex kinases assays, EpoR, JAK2, and a 150-kD protein were phosphorylated on tyrosine. Taken together, the results further support the hypothesis that, on Epo stimulation, JAK2 associates with the membrane-proximal cytoplasmic region of the EpoR to be activated and induces tyrosine phosphorylation of cellular substrates, including the EpoR, to transduce a growth signal.



1990 ◽  
Vol 269 (2) ◽  
pp. 431-436 ◽  
Author(s):  
C K Huang ◽  
V Bonak ◽  
G R Laramee ◽  
J E Casnellie

Protein tyrosine phosphorylation in rabbit peritoneal neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. Stimulation of the neutrophils with chemotactic factor fMet-Leu-Phe (10 nM) caused rapid increases of tyrosine phosphorylation of several proteins with apparent molecular masses of (Group A) 54-58 kDa and 100-125 kDa and (Group B) 36-41 kDa. Stimulation of Group A proteins was observed by fMet-Leu-Phe (10 nM, maximum at 20 s) and A23187 (1 microM, 1 min). Stimulation of Group B proteins was observed by fMet-Leu-Phe (ED50 0.15 nM, 1 min), leukotriene B4 (ED50 0.15 nM, 1 min), phorbol 12-myristate 13-acetate (PMA) (ED50 25 ng/ml, 10 min) and partially by ionophore A23187 (1 microM, 1 min). Pretreatment of the cell with the protein kinase inhibitor H-7 (25 microM, 5 min) and PMA (0.1 microgram/ml, 3 min) partially inhibited the fMet-Leu-Phe effect. However, pretreatment of the cells with quin 2/AM (20 microM, 10 min) completely inhibited the fMet-Leu-Phe effect. The results indicate that rapid regulation of tyrosine phosphorylation is an early event occurring in stimulated neutrophils. Furthermore the effect of fMet-Leu-Phe on tyrosine phosphorylation may require Ca2+ mobilization and may partially require the activity of H-7-sensitive protein kinases.



Author(s):  
Clara I. Marín-Briggiler ◽  
Guillermina M. Luque ◽  
María G. Gervasi ◽  
Natalia Oscoz-Susino ◽  
Jessica M. Sierra ◽  
...  

To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro.



Sign in / Sign up

Export Citation Format

Share Document