Ceramic nanoparticles in metal matrix composites * *Part of Section 6.5 was adapted from He, F., Han, Q., Jackson, M. J., 2008. Nanoparticulate reinforced metal matrix nanocomposites – a review. International Journal of Nanoparticles. 1(4). pp. 301–309. Used with permission from Inderscience. Inderscience retains copyright of the original material.

2013 ◽  
pp. 185-207
Author(s):  
F. He
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2021 ◽  
pp. 002199832098856
Author(s):  
Rachit Ranjan ◽  
Vivek Bajpai

This articles reviews till-date available literature on metal matrix composites reinforced with graphene, CNT and other carbonaceous materials. The article has a special focus on the mechanical, tribological and challenges associated with the fabrication of nanocomposites. Simultaneously, it reviews the synthesis, strengthening mechanism and applications of graphene along with research gap associated with graphene metal matrix nanocomposites (GMMNC). Carbonaceous nanofillers, e.g. Graphene, are known to have extraordinary mechanical, thermal and electrical properties along with multifaceted characteristics. These materials have the potential to become an ideal material in numerous application which requires reinforcement. Graphene nanoplatelets (GNP) suffers various challenges starting from its synthesis to the uniform distribution within the matrix material. Our concern is to give details on the challenges associated with graphene and metal matrix composites along with the solution so that new research can be done at its ease. Section 1 of the article gives a detailed analysis of various carbonaceous reinforcement materials. Preparation, processing and dispersion technique for graphene and composite material is given in section 2. Section 3 of the article deals with different matrix material used in MMNC along with the properties and challenges associated with it in tabulated form. Strengthening mechanism used for the enhancement of mechanical properties of composites is described in section 4, whereas, Section 5 deals with the applications and Research gap.


Author(s):  
S. Jayalakshmi ◽  
R. Arvind Singh

The chapter highlights the various processing/synthesizing routes of Light Metal Matrix Nanocomposites (LMMNCs), their microstructural characteristics, mechanical behaviour, and tribological properties. LMMNCs are advanced materials, in which nano-sized ceramic particles are reinforced into Al/Mg matrices. In conventional Metal Matrix Composites (MMCs), the incorporation of micron sized reinforcements in the matrix usually results in a considerable improvement in hardness and ultimate strength when compared to the unreinforced base material. However, most of these composites do not show plastic deformation (little or no yield) and exhibit drastic reduction in ductility. This poses a major limitation for MMCs to be used in real-time applications. In order to overcome this drawback, Al/Mg composites with nano-scale reinforcements have been developed. Based on numerous research works, it has been established that LMMNCs are better materials that possess superior properties, wherein both strength and ductility improvements along with excellent wear resistance can be achieved.


2019 ◽  
Vol 71 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Shubhajit Das ◽  
Chandrasekaran M. ◽  
Sutanu Samanta ◽  
Palanikumar Kayaroganam ◽  
Paulo Davim J.

Purpose Composite materials are replacing the traditional materials because of their remarkable properties and the addition of nanoparticles making a new trend in material world. The nano addition effect on tribological properties is essential to be used in automotive and industrial applications. The current work investigates the sliding wear behavior of an aluminum alloy (AA) 6061-based hybrid metal matrix composites (HMMCs) reinforced with SiC and B4C ceramic nanoparticles. Design/methodology/approach The hybrid composites are fabricated using stir casting process. Two different compositions were fabricated by varying the weight percentage of the ceramic reinforcements. An attempt has been made to study the wear and friction behavior of the composites using pin-on-disc tribometer to consider the effects of sliding speed, sliding distance and the normal load applied. Findings The tribological tests are carried out and the performances were compared. Increase in sliding speed to 500 rpm resulted in the rise of temperature of the contacting tribo-surface which intensified the wear rate at 30N load for the HMMC. The presence of the ceramic particles further reduced the contact region of the mating surface thus reducing the coefficient of friction at higher sliding speeds. Oxidation, adhesion, and abrasion were identified to be the main wear mechanisms which were further confirmed using energy dispersive spectroscopy and field emission scanning electron microscopy (FESEM) of the worn out samples. Practical implications The enhancement of wear properties is achieved because of the addition of the SiC and B4C ceramic nanoparticles, in which these composites can be applied to automobile, aerospace and industrial products where the mating parts with less weight is required. Originality/value The influence of nanoparticles on the tribological performance is studied in detail comprising of two different ceramic particles which is almost new research. The sliding effect of hybrid composites with nano materials paves the way for using these materials in engineering and domestic applications.


2015 ◽  
Vol 813-814 ◽  
pp. 625-628
Author(s):  
A. Nandakumar ◽  
D. Dinakaran

Metal Matrix nanoComposites (MMNC) refer to materials consisting of a ductile metal or alloy matrix in which some nanosized reinforcement materials is implanted. These materials combine metal and ceramic features, i.e., ductility and toughness with high strength. Thus, metal matrix nanocomposites are suitable for production of materials with high strength in shear/compression processes and high service temperature capabilities. Both Metal Matrix Composite (MMC) and Ceramic Matrix Composites (CMC) with Carbon nanoTubes (CNT) nanocomposites hold promise, but also pose challenges for real success. In the present paper deals an inclusive review of literature in effect of nanoparticles in reinforced metal matrix composites on the machinability characteristics of the composite materials.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1613
Author(s):  
Íris Carneiro ◽  
Sónia Simões

Carbon nanotubes (CNTs)-reinforced metal matrix composites are very attractive advanced nanocomposites due to their potential unusual combination of excellent properties. These nanocomposites can be produced by several techniques, the most reported being powder metallurgy, electrochemical routes, and stir or ultrasonic casting. However, the final mechanical properties are often lower than expected. This can be attributed to a lack of understanding concerning the strengthening mechanisms that act to improve the mechanical properties of the metal matrix via the presence of the CNTs. The dispersion of the CNTs is the main challenge in the production of the nanocomposites, and is independent of the production technique used. This review describes the strengthening mechanism that act in CNT-reinforced metal matrix nanocomposites, such as the load transfer, grain refinement or texture strengthening, second phase, and strain hardening. However, other mechanisms can occur, such as solid solution strengthening, and these depend on the metal matrix used to produce the nanocomposites. Different metallic matrices and different production techniques are described to evaluate their influence on the reinforcement of these nanocomposites.


2015 ◽  
Vol 74 (10) ◽  
Author(s):  
C. D. Marini ◽  
N. Fatchurrohman

In recent years, metal matrix composites have been considered as materials that offer better mechanical properties compared to conventional alloys. Recently, the developments of metal matrix nanocomposites (MMNCs) have become more attractive in various applications. However, the synthesis of MMNCs by conventional casting method has shown a limitation due to low wettability of the reinforcement phase by the molten metal. This paper is aimed at reviewing the best result techniques to fabricate the aluminium matrix nanocomposite (AlMNCs). However, each of these techniques has their own advantages and disadvantages. This review concludes powder metallurgy (PM) as the best technique for mass production and cost effectiveness.


2007 ◽  
Vol 534-536 ◽  
pp. 245-248 ◽  
Author(s):  
Quang Pham ◽  
Young Gi Jeong ◽  
Seung Chae Yoon ◽  
Sun Ig Hong ◽  
Soon Hyung Hong ◽  
...  

Carbon nanotubes (CNTs) have been the subject of intensive study for applications in the fields of nanotechnologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (≈ several nm) as well as their high Young’s modulus (≈ 1 TPa), tensile strength (≈ 200 GPa) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of CNT/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated CNT/Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Nouari Saheb ◽  
Zafar Iqbal ◽  
Abdullah Khalil ◽  
Abbas Saeed Hakeem ◽  
Nasser Al Aqeeli ◽  
...  

Metal matrix nanocomposites (MMNCs) are those metal matrix composites where the reinforcement is of nanometer dimensions, typically less than 100 nm in size. Also, it is possible to have both the matrix and reinforcement phases of nanometer dimensions. The improvement in mechanical properties of MMNCs is attributed to the size and strength of the reinforcement as well as to the fine grain size of the matrix. Spark plasma sintering has been used extensively over the past years to consolidate wide range of materials including nanocomposites and was shown to be effective noneconventional sintering method for obtaining fully dense materials with preserved nanostructure features. The objective of this work is to briefly present the spark plasma sintering process and review published work on spark-plasma-sintered metals and metal matrix nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document