Specialist yarn and fabric structures

Author(s):  
R. H. Gong
Keyword(s):  
Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 525
Author(s):  
Ana Kiš ◽  
Snježana Brnada ◽  
Stana Kovačević

In this work, aramid fibers were used to develop new, high-performance fabrics for high-temperature protective clothing. The research was based on the impact of the weave structure on fabric resistance to radiant heat. The goals of the research were primarily related to the development of new fabric structures created by the weave structure, which gives better protection of the body against high temperatures in relation to the standard weave structures that are used today. According to the results obtained it can be concluded that the fabric weave significantly affects the fabric structure, which consequently determines the effectiveness of protection against high temperatures. The justification for the use of multi-weft and strucks weave structure, which provides greater thermal protection and satisfactory breathability than commonly used weave structures, was ascertained.


2001 ◽  
Vol 79 (26-28) ◽  
pp. 2451-2459 ◽  
Author(s):  
F. Sindel ◽  
T. Nouri-Baranger ◽  
P. Trompette
Keyword(s):  

2012 ◽  
Vol 503-504 ◽  
pp. 498-502 ◽  
Author(s):  
Lan Qing Feng ◽  
Yan Jun Liu

Based on the main features of coolsmart fiber and the theory of knitted fabric structures, two structures of sports and leisure knitted fabrics with fast moisture absorption, description and anti-bacterial function are introduced in this article, detailing the selection of raw materials, pattern formation effect, the machine code organization and cam set out.


2011 ◽  
Vol 175-176 ◽  
pp. 465-468 ◽  
Author(s):  
Lei Shi ◽  
Hua Wu Liu ◽  
Ping Xu ◽  
Dang Feng Zhao

Plain weave fabrics of polyacrylonitrile pre-oxidation yarns (PANOF) were prepared by small rapier loom. The flame retardation properties, mechanical properties and wear behaviors of PANOF plain weave fabrics were tested. The limiting oxygen index (LOI) of these PANOF plain weave fabric samples was 31%, which meets the criterion of flame-retardant fabrics. These fabrics neither melt nor shrunk when left in flame for a short period of time and the fabric structures were well maintained. Compared with flammable polyacrylonitrile fabrics, the polyacrylonitrile pre-oxidation fabrics exhibited excellent flame retardation properties, with satisfactory mechanical properties and comfortable handle.


2016 ◽  
Vol 88 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Ka-yan Yim ◽  
Chi-wai Kan

Fabric hand is an indispensable characteristic for the selection of fabric and product development and the buying consideration for manufacturers and consumers. However, there is little comprehensive work on the hand feel property of warp-knitted fabrics due to the mainstream natural fibers (cotton, wool and silk) and other fabric structures (woven, weft-knitted and nonwoven). The increasing potential for the wide variety of applications and development of warp-knitted fabrics is not only because its fabric hand gives better determination for fabric marketing, but also because it provides extensive scope for fabric performance and appearance. This paper reports an experimental study on the integrated fabric hand behavior of a series of warp-knitted fabrics made for various apparel applications, such as sportswear, lingerie and leisure wear. These 105 fabrics were produced by varying different physical parameters, including fabric weight and fabric thickness. The Kawabata Evaluation System for Fabric (KES-F) was employed to obtain the fabric hand properties (primary hand value and total hand value) related with stiffness, smoothness and softness. All low-stress mechanical properties and fabric hand values from the testing results were used to verify the applicability of the KES-F on warp-knitted fabrics and to analyze the relationships of fabric parameters and hand characteristics. The results indicate that the KES-F is an appropriate tool to measure the hand attributes of warp-knitted samples, and moderate correlations between physical properties and mechanical behavior were found.


2013 ◽  
Vol 8 (2) ◽  
pp. 155892501300800 ◽  
Author(s):  
Nazanin Ezaz Shahabi ◽  
Siamak Saharkhiz ◽  
S. Mohammad Hosseini Varkiyani

This paper investigates the impacts of weave structures and weft density on the Poisson's ratio of worsted fabric under uniaxial extension. In this study nine groups of worsted fabrics comprising of three weave structures (twill 2/2, twill 3/1 and hopsack 2/2), each produced in three different weft densities were examined. Samples were extended in weft direction uniaxially and the Poisson's ratio of fabric in various extensions was measured. Analysis showed that the effect of both weft density and weave structure are significant with no combination effect on the Poisson's ratio. It was found that there is an exponential correlation between warp and weft crimp during fabric extension. For the worsted fabrics used in this research in all three fabric structures, fabrics with higher weft yarn density have higher value of Poisson's ratio. It was also concluded that for the fabrics with the same condition but only different in structures, this ratio is related to the structural firmness of fabric. In all three fabric structures the value of the Poisson's ratio were following the same pattern of twill 2/2, twill 3/1 and hopsack 2/2 from highest to lowest value. It was revealed that there is a high linear correlation between the crimp interchange ratio and Poisson's ratio.


Sign in / Sign up

Export Citation Format

Share Document