scholarly journals The SEB-1 Transcription Factor Binds to the STRE Motif inNeurospora crassaand Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism

2016 ◽  
Vol 6 (5) ◽  
pp. 1327-1343 ◽  
Author(s):  
Fernanda Zanolli Freitas ◽  
Stela Virgilio ◽  
Fernanda Barbosa Cupertino ◽  
David John Kowbel ◽  
Mariana Fioramonte ◽  
...  
2020 ◽  
Vol 21 (13) ◽  
pp. 4777 ◽  
Author(s):  
Feng He ◽  
Xiaoli Ru ◽  
Tao Wen

Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.


2017 ◽  
Author(s):  
James D. Warner ◽  
Mandi Wiley ◽  
Ying-Y Wu ◽  
Feng Wen ◽  
Michael Kinter ◽  
...  

ABSTRACTInterferon Regulatory Factor 5 (IRF5) plays an important role in limiting pathogenic infection and tumor development. Host protection by IRF5 can occur through a variety of mechanisms including production of type I interferon and cytokines as well as the regulation of cell survival, growth, proliferation, and differentiation. While modulation of these cellular processes is attributed to IRF5 transcription factor function in the nucleus, emerging evidence suggests that IRF5 may also retain non-transcriptional regulatory properties within the cytoplasmic compartment. Consistent with this notion, we report the ability of IRF5 to control gene expression at the level of mRNA translation. Our findings demonstrate that IRF5 interacts with the translation initiation complex in the absence of the m7GTP cap-binding protein, eIF4E. We observed that under nutrient deprivation-induced cell stress, IRF5 promoted mRNA translation of the master integrated stress response (ISR) regulator, Activating Transcription Factor 4 (ATF4). Enhanced ATF4 protein expression correlated with increased levels of downstream target genes including CHOP and GADD34 and was associated with amplification of eIF2α de-phosphorylation and translational de-repression under stress. The novel mechanism we describe broadens our understanding of how IRF5 regulates gene expression and may govern diverse cellular processes in the absence of stimuli that trigger IRF5 nuclear translocation.


2021 ◽  
Vol 22 (13) ◽  
pp. 6952
Author(s):  
Mingxin Yu ◽  
Junling Liu ◽  
Bingshuai Du ◽  
Mengjuan Zhang ◽  
Aibin Wang ◽  
...  

NAC (NAM, ATAF1/2, and CUC2) transcription factors are ubiquitously distributed in eukaryotes and play significant roles in stress response. However, the functional verifications of NACs in Picea (P.) wilsonii remain largely uncharacterized. Here, we identified the NAC transcription factor PwNAC11 as a mediator of drought stress, which was significantly upregulated in P. wilsonii under drought and abscisic acid (ABA) treatments. Yeast two-hybrid assays showed that both the full length and C-terminal of PwNAC11 had transcriptional activation activity and PwNAC11 protein cannot form a homodimer by itself. Subcellular observation demonstrated that PwNAC11 protein was located in nucleus. The overexpression of PwNAC11 in Arabidopsis obviously improved the tolerance to drought stress but delayed flowering time under nonstress conditions. The steady-state level of antioxidant enzymes’ activities and light energy conversion efficiency were significantly increased in PwNAC11 transgenic lines under dehydration compared to wild plants. PwNAC11 transgenic lines showed hypersensitivity to ABA and PwNAC11 activated the expression of the downstream gene ERD1 by binding to ABA-responsive elements (ABREs) instead of drought-responsive elements (DREs). Genetic evidence demonstrated that PwNAC11 physically interacted with an ABA-induced protein—ABRE Binding Factor3 (ABF3)—and promoted the activation of ERD1 promoter, which implied an ABA-dependent signaling cascade controlled by PwNAC11. In addition, qRT-PCR and yeast assays showed that an ABA-independent gene—DREB2A—was also probably involved in PwNAC11-mediated drought stress response. Taken together, our results provide the evidence that PwNAC11 plays a dominant role in plants positively responding to early drought stress and ABF3 and DREB2A synergistically regulate the expression of ERD1.


2015 ◽  
Vol 28 (1) ◽  
pp. 181-201 ◽  
Author(s):  
Naohiko Ohama ◽  
Kazuya Kusakabe ◽  
Junya Mizoi ◽  
Huimei Zhao ◽  
Satoshi Kidokoro ◽  
...  

2015 ◽  
Vol 62 (3) ◽  
pp. 491-498 ◽  
Author(s):  
Agata Grzywacz ◽  
Joanna Gdula-Argasińska ◽  
Bożena Muszyńska ◽  
Małgorzata Tyszka-Czochara ◽  
Tadeusz Librowski ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Kyle R. Pomraning ◽  
Erin L. Bredeweg ◽  
Eduard J. Kerkhoven ◽  
Kerrie Barry ◽  
Sajeet Haridas ◽  
...  

ABSTRACTThe yeastYarrowia lipolyticaundergoes a morphological transition from yeast-to-hyphal growth in response to environmental conditions. A forward genetic screen was used to identify mutants that reliably remain in the yeast phase, which were then assessed by whole-genome sequencing. All thesmoothmutants identified, so named because of their colony morphology, exhibit independent loss of DNA at a repetitive locus made up of interspersed ribosomal DNA and short 10- to 40-mer telomere-like repeats. The loss of repetitive DNA is associated with downregulation of genes with stress response elements (5′-CCCCT-3′) and upregulation of genes with cell cycle box (5′-ACGCG-3′) motifs in their promoter region. The stress response element is bound by the transcription factor Msn2p inSaccharomyces cerevisiae. We confirmed that theY. lipolyticamsn2(Ylmsn2) ortholog is required for hyphal growth and found that overexpression of Ylmsn2enables hyphal growth insmoothstrains. The cell cycle box is bound by the Mbp1p/Swi6p complex inS. cerevisiaeto regulate G1-to-S phase progression. We found that overexpression of either the Ylmbp1or Ylswi6homologs decreased hyphal growth and that deletion of either Ylmbp1or Ylswi6promotes hyphal growth insmoothstrains. A second forward genetic screen for reversion to hyphal growth was performed with thesmooth-33mutant to identify additional genetic factors regulating hyphal growth inY. lipolytica. Thirteen of the mutants sequenced from this screen had coding mutations in five kinases, including the histidine kinases Ylchk1and Ylnik1and kinases of the high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase cascade Ylssk2, Ylpbs2, and Ylhog1. Together, these results demonstrate thatY. lipolyticatransitions to hyphal growth in response to stress through multiple signaling pathways.IMPORTANCEMany yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition inYarrowia lipolytica. We confirmed that the transcription factor Ylmsn2is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1and Ylnik1as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest thatY. lipolyticatransitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response.


2021 ◽  
Author(s):  
Jun Miao ◽  
Chengqi Wang ◽  
Amuza Lucky ◽  
Xiaoying Liang ◽  
Hui Min ◽  
...  

AbstractThe histone acetyltransferase GCN5-associated SAGA complex is evolutionarily conserved from yeast to human and functions as a general transcription co-activator in global gene regulation. In this study, we identified a divergent GCN5 complex in Plasmodium falciparum, which contains two plant homeodomain (PHD) proteins (PfPHD1 and PfPHD2) and a plant apetela2 (AP2)-domain transcription factor (PfAP2-LT). To dissect the functions of the PfGCN5 complex, we generated parasites with the bromodomain deletion in PfGCN5 and the PHD domain deletion in PfPHD1. The two deletion mutants closely phenocopied each other, exhibiting significantly reduced merozoite invasion of erythrocytes and elevated sexual conversion. These domain deletions caused dramatic decreases not only in histone H3K9 acetylation but also in H3K4 trimethylation, indicating synergistic crosstalk between the two euchromatin marks. Domain deletion in either PfGCN5 or PfPHD1 profoundly disturbed the global transcription pattern, causing altered expression of more than 60% of the genes. At the schizont stage, these domain deletions were linked to specific downregulation of merozoite genes involved in erythrocyte invasion, many of which harbor the DNA-binding motifs for AP2-LT and/or AP2-I, suggesting targeted recruitment of the PfGCN5 complex to the invasion genes by these specific transcription factors. Conversely, at the ring stage, PfGCN5 or PfPHD1 domain deletions disrupted the mutually exclusive expression pattern of the entire var gene family, which encodes the virulent factor PfEMP1. Correlation analysis between the chromatin state and alteration of gene expression demonstrated that up- and down-regulated genes in these mutants are highly correlated with the silenct and active chromatin states in the wild-type parasite, respectively. Collectively, the PfGCN5 complex represents a novel HAT complex with a unique subunit composition including the AP2 transcription factor, which signifies a new paradigm for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist.Author SummaryEpigenetic regulation of gene expression plays essential roles in orchestrating the general and parasite-specific cellular pathways in the malaria parasite Plasmodium falciparum. Using tandem affinity purification and proteomic characterization, we identified a divergent transcription co-activator – the histone acetyltransferase GCN5-associated complex in P. falciparum, which contains nine core components, including two PHD domain proteins (PfPHD1 and PfPHD2) and a plant apetela2-domain transcription factor. To understand the functions of the PfGCN5 complex, we performed gene disruption in two subunits of this complex, PfGCN5 and PfPHD1. We found that the two deletion mutants displayed very similar growth phenotypes, including significantly reduced merozoite invasion rates and elevated sexual conversion. These two mutants were associated with dramatic decreases in histone H3K9 acetylation and H3K4 trimethylation, which led to global changes in chromatin states and gene expression. Genes significantly affected by the PfGCN5 and PfPHD1 gene disruption include those participating in parasite-specific pathways such as invasion, virulence, and sexual development. In conclusion, this study presents a new model of the PfGCN5 complex for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254447
Author(s):  
Marcos Francia ◽  
Martin Stortz ◽  
Camila Vazquez Echegaray ◽  
Camila Oses ◽  
Paula Verneri ◽  
...  

Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.


Sign in / Sign up

Export Citation Format

Share Document