scholarly journals The Double-Bromodomain Proteins Bdf1 and Bdf2 Modulate Chromatin Structure to Regulate S-Phase Stress Response inSchizosaccharomyces pombe

Genetics ◽  
2011 ◽  
Vol 190 (2) ◽  
pp. 487-500 ◽  
Author(s):  
Mikael V. Garabedian ◽  
Chiaki Noguchi ◽  
Melissa A. Ziegler ◽  
Mukund M. Das ◽  
Tanu Singh ◽  
...  
1991 ◽  
Vol 11 (10) ◽  
pp. 5301-5311
Author(s):  
J A Brown ◽  
S G Holmes ◽  
M M Smith

The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.


2008 ◽  
Vol 19 (12) ◽  
pp. 5193-5202 ◽  
Author(s):  
Simone Sabbioneda ◽  
Audrey M. Gourdin ◽  
Catherine M. Green ◽  
Angelika Zotter ◽  
Giuseppina Giglia-Mari ◽  
...  

Y-family DNA polymerases carry out translesion synthesis past damaged DNA. DNA polymerases (pol) η and ι are usually uniformly distributed through the nucleus but accumulate in replication foci during S phase. DNA-damaging treatments result in an increase in S phase cells containing polymerase foci. Using photobleaching techniques, we show that polη is highly mobile in human fibroblasts. Even when localized in replication foci, it is only transiently immobilized. Although ubiquitination of proliferating cell nuclear antigen (PCNA) is not required for the localization of polη in foci, it results in an increased residence time in foci. polι is even more mobile than polη, both when uniformly distributed and when localized in foci. Kinetic modeling suggests that both polη and polι diffuse through the cell but that they are transiently immobilized for ∼150 ms, with a larger proportion of polη than polι immobilized at any time. Treatment of cells with DRAQ5, which results in temporary opening of the chromatin structure, causes a dramatic immobilization of polη but not polι. Our data are consistent with a model in which the polymerases are transiently probing the DNA/chromatin. When DNA is exposed at replication forks, the polymerase residence times increase, and this is further facilitated by the ubiquitination of PCNA.


2015 ◽  
Vol 291 (2) ◽  
pp. 522-537 ◽  
Author(s):  
François Bélanger ◽  
Jean-Philippe Angers ◽  
Émile Fortier ◽  
Ian Hammond-Martel ◽  
Santiago Costantino ◽  
...  

Biology Open ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Solenne Gaillard ◽  
Virginie Charasson ◽  
Cyril Ribeyre ◽  
Kader Salifou ◽  
Marie-Jeanne Pillaire ◽  
...  

ABSTRACT KDM5A and KDM5B histone-demethylases are overexpressed in many cancers and have been involved in drug tolerance. Here, we describe that KDM5A, together with KDM5B, contribute to replication stress (RS) response and tolerance. First, they positively regulate RRM2, the regulatory subunit of ribonucleotide reductase. Second, they are required for optimal levels of activated Chk1, a major player of the intra-S phase checkpoint that protects cells from RS. We also found that KDM5A is enriched at ongoing replication forks and associates with both PCNA and Chk1. Because RRM2 is a major determinant of replication stress tolerance, we developed cells resistant to HU, and show that KDM5A/B proteins are required for both RRM2 overexpression and tolerance to HU. Altogether, our results indicate that KDM5A/B are major players of RS management. They also show that drugs targeting the enzymatic activity of KDM5 proteins may not affect all cancer-related consequences of KDM5A/B overexpression.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shalini Aricthota ◽  
Devyani Haldar

In eukaryotes, paused replication forks are prone to collapse, which leads to genomic instability, a hallmark of cancer. Dbf4 Dependent Kinase (DDK)/Hsk1Cdc7 is a conserved replication initiator kinase with conflicting roles in replication stress response. Here, we show that fission yeast DDK/Hsk1 phosphorylates sirtuin, Hst4 upon replication stress at C-terminal serine residues. Phosphorylation of Hst4 by DDK marks it for degradation via the ubiquitin ligase SCFpof3. Phosphorylation defective hst4 mutant (4SA-hst4) displays defective recovery from replication stress, faulty fork restart, slow S-phase progression and decreased viability. The highly conserved Fork Protection Complex (FPC) stabilizes stalled replication forks. We found that the recruitment of FPC components, Swi1 and Mcl1 to the chromatin is compromised in the 4SA-hst4 mutant, although whole cell levels increased. These defects are dependent upon H3K56ac and independent of intra S-phase checkpoint activation. Finally, we show conservation of H3K56ac dependent regulation of Timeless, Tipin and And-1 in human cells. We propose that degradation of Hst4 via DDK increases H3K56ac, changing the chromatin state in the vicinity of stalled forks facilitating recruitment and function of FPC. Overall, this study identified a crucial role of DDK and FPC in the regulation of replication stress response with implications in cancer therapeutics.


Genetics ◽  
2015 ◽  
Vol 199 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
Laura Lee ◽  
Jairo Rodriguez ◽  
Toshio Tsukiyama

Cell Cycle ◽  
2003 ◽  
Vol 2 (4) ◽  
pp. 302-305 ◽  
Author(s):  
Julie M. Bailis ◽  
Susan L. Forsburg

1998 ◽  
Vol 336 (3) ◽  
pp. 619-624 ◽  
Author(s):  
Maya CESARI ◽  
Laurent HÉLIOT ◽  
Catherine MEPLAN ◽  
Michel PABION ◽  
Saadi KHOCHBIN

Chromatin plays a major role in the tight regulation of gene expression and in constraining inappropriate gene activity. Replication-coupled chromatin assembly ensures maintenance of these functions of chromatin during S phase of the cell cycle. Thus treatment of cells with an inhibitor of translation, such as cycloheximide (CX), would be expected to have a dramatic effect on chromatin structure and function, essentially in S phase of the cell cycle, due to uncoupled DNA replication and chromatin assembly. In this work, we confirm this hypothesis and show that CX can induce a dramatic S-phase-dependent alteration in chromatin structure that is associated with general RNA polymerase II-dependent transcriptional activation. Using two specific RNA polymerase II-transcribed genes, we confirm the above conclusion and show that CX-mediated transcriptional activation is enhanced during the DNA replication phase of the cell cycle. Moreover, we show co-operation between an inhibitor of histone deacetylase and CX in inducing gene expression, which is again S-phase-dependent. The modest effect of CX in inducing the activity of a transiently transfected promoter shows that the presence of the promoter in an endogenous chromatin context is necessary in order to observe transcriptional activation. We therefore suggest that the uncoupled DNA replication and histone synthesis that occur after CX treatment induces a general modification of chromatin structure, and propose that this general disorganization of chromatin structure is responsible for a widespread activation of RNA polymerase II-mediated gene transcription.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Richard C. Chang ◽  
Kara N. Thomas ◽  
Nicole A. Mehta ◽  
Kylee J. Veazey ◽  
Scott E. Parnell ◽  
...  

Abstract Background A critical question emerging in the field of developmental toxicology is whether alterations in chromatin structure induced by toxicant exposure control patterns of gene expression or, instead, are structural changes that are part of a nuclear stress response. Previously, we used a mouse model to conduct a three-way comparison between control offspring, alcohol-exposed but phenotypically normal animals, and alcohol-exposed offspring exhibiting craniofacial and central nervous system structural defects. In the cerebral cortex of animals exhibiting alcohol-induced dysgenesis, we identified a dramatic increase in the enrichment of dimethylated histone H3, lysine 9 (H3K9me2) within the regulatory regions of key developmental factors driving histogenesis in the brain. However, whether this change in chromatin structure is causally involved in the development of structural defects remains unknown. Results Deep-sequencing analysis of the cortex transcriptome reveals that the emergence of alcohol-induced structural defects correlates with disruptions in the genetic pathways controlling oxidative phosphorylation and mitochondrial function. The majority of the affected pathways are downstream targets of the mammalian target of rapamycin complex 2 (mTORC2), indicating that this stress-responsive complex plays a role in propagating the epigenetic memory of alcohol exposure through gestation. Importantly, transcriptional disruptions of the pathways regulating oxidative homeostasis correlate with the emergence of increased H3K9me2 across genic, repetitive, and non-transcribed regions of the genome. However, although associated with gene silencing, none of the candidate genes displaying increased H3K9me2 become transcriptionally repressed, nor do they exhibit increased markers of canonical heterochromatin. Similar to studies in C. elegans, disruptions in oxidative homeostasis induce the chromatin looping factor SATB2, but in mammals, this protein does not appear to drive increased H3K9me2 or altered patterns of gene expression. Conclusions Our studies demonstrate that changes in H3K9me2 associate with alcohol-induced congenital defects, but that this epigenetic change does not correlate with transcriptional suppression. We speculate that the mobilization of SATB2 and increased enrichment of H3K9me2 may be components of a nuclear stress response that preserve chromatin integrity and interactions under prolonged oxidative stress. Further, we postulate that while this response may stabilize chromatin structure, it compromises the nuclear plasticity required for normal differentiation.


Sign in / Sign up

Export Citation Format

Share Document